IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v66y2014icp496-508.html
   My bibliography  Save this item

Design and testing of Energy Bags for underwater compressed air energy storage

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Frate, Guido Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2021. "Energy storage for grid-scale applications: Technology review and economic feasibility analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1754-1772.
  2. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
  3. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
  4. Marcin Jankowski & Anna Pałac & Krzysztof Sornek & Wojciech Goryl & Maciej Żołądek & Maksymilian Homa & Mariusz Filipowicz, 2024. "Status and Development Perspectives of the Compressed Air Energy Storage (CAES) Technologies—A Literature Review," Energies, MDPI, vol. 17(9), pages 1-46, April.
  5. Sarmast, Sepideh & Rouindej, Kamyar & Fraser, Roydon A. & Dusseault, Maurice B., 2024. "Optimizing near-adiabatic compressed air energy storage (NA-CAES) systems: Sizing and design considerations," Applied Energy, Elsevier, vol. 357(C).
  6. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  7. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
  8. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
  9. Shi, Yan & Wu, Tiecheng & Cai, Maolin & Wang, Yixuan & Xu, Weiqing, 2016. "Energy conversion characteristics of a hydropneumatic transformer in a sustainable-energy vehicle," Applied Energy, Elsevier, vol. 171(C), pages 77-85.
  10. Qing, He & Lijian, Wang & Qian, Zhou & Chang, Lu & Dongmei, Du & Wenyi, Liu, 2019. "Thermodynamic analysis and optimization of liquefied air energy storage system," Energy, Elsevier, vol. 173(C), pages 162-173.
  11. Hao, Yinping & He, Qing & Fu, Hailun & Du, Dongmei & Liu, Wenyi, 2021. "Thermal parameter optimization design of an energy storage system with CO2 as working fluid," Energy, Elsevier, vol. 230(C).
  12. Sheng, L. & Zhou, Z. & Charpentier, J.F. & Benbouzid, M.E.H., 2017. "Stand-alone island daily power management using a tidal turbine farm and an ocean compressed air energy storage system," Renewable Energy, Elsevier, vol. 103(C), pages 286-294.
  13. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
  14. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).
  15. Cheung, Brian C. & Carriveau, Rupp & Ting, David S.K., 2014. "Multi-objective optimization of an underwater compressed air energy storage system using genetic algorithm," Energy, Elsevier, vol. 74(C), pages 396-404.
  16. Daniel Pottie & Bruno Cardenas & Seamus Garvey & James Rouse & Edward Hough & Audrius Bagdanavicius & Edward Barbour, 2023. "Comparative Analysis of Isochoric and Isobaric Adiabatic Compressed Air Energy Storage," Energies, MDPI, vol. 16(6), pages 1-18, March.
  17. Jurasz, Jakub & Piasecki, Adam & Hunt, Julian & Zheng, Wandong & Ma, Tao & Kies, Alexander, 2022. "Building integrated pumped-storage potential on a city scale: An analysis based on geographic information systems," Energy, Elsevier, vol. 242(C).
  18. Clemens Mostert & Berit Ostrander & Stefan Bringezu & Tanja Manuela Kneiske, 2018. "Comparing Electrical Energy Storage Technologies Regarding Their Material and Carbon Footprint," Energies, MDPI, vol. 11(12), pages 1-25, December.
  19. Kantharaj, Bharath & Garvey, Seamus & Pimm, Andrew, 2015. "Compressed air energy storage with liquid air capacity extension," Applied Energy, Elsevier, vol. 157(C), pages 152-164.
  20. Steinmann, Wolf-Dieter, 2017. "Thermo-mechanical concepts for bulk energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 205-219.
  21. Liu, Zhan & Ding, Jialu & Huang, Xinyu & Liu, Zhengguang & Yan, Xuewen & Liu, Xianglei & Yang, Xiaohu, 2024. "Analysis of a hybrid heat and underwater compressed air energy storage system used at coastal areas," Applied Energy, Elsevier, vol. 354(PA).
  22. He, Qing & Liu, Hui & Hao, Yinping & Liu, Yaning & Liu, Wenyi, 2018. "Thermodynamic analysis of a novel supercritical compressed carbon dioxide energy storage system through advanced exergy analysis," Renewable Energy, Elsevier, vol. 127(C), pages 835-849.
  23. Teng Ren & Weiqing Xu & Maolin Cai & Xiaoshuang Wang & Minghan Li, 2019. "Experiments on Air Compression with an Isothermal Piston for Energy Storage," Energies, MDPI, vol. 12(19), pages 1-13, September.
  24. Luca Cacciali & Lorenzo Battisti & Davide Occello, 2023. "Efficiency-Driven Iterative Model for Underwater Compressed Air Energy Storage (UW-CAES)," Energies, MDPI, vol. 16(24), pages 1-17, December.
  25. Kim, Min Jae & Kim, Tong Seop, 2017. "Feasibility study on the influence of steam injection in the compressed air energy storage system," Energy, Elsevier, vol. 141(C), pages 239-249.
  26. Zhang, Yuan & Liang, Tianyang & Yang, Ke, 2022. "An integrated energy storage system consisting of Compressed Carbon dioxide energy storage and Organic Rankine Cycle: Exergoeconomic evaluation and multi-objective optimization," Energy, Elsevier, vol. 247(C).
  27. Chen, Xinhui & Wei, Jianfeng & Sheng, Songwei & Wang, Wensheng & Wang, Kunlin & Zhang, Yaqun & Wang, Zhenpeng, 2023. "Design and experimental study of a novel type water-filled submerged flexible bag wave energy converter," Renewable Energy, Elsevier, vol. 218(C).
  28. He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2018. "Compression performance optimization considering variable charge pressure in an adiabatic compressed air energy storage system," Energy, Elsevier, vol. 165(PB), pages 349-359.
  29. Moradi, Jalal & Shahinzadeh, Hossein & Khandan, Amirsalar & Moazzami, Majid, 2017. "A profitability investigation into the collaborative operation of wind and underwater compressed air energy storage units in the spot market," Energy, Elsevier, vol. 141(C), pages 1779-1794.
  30. Kangyu Deng & Kai Zhang & Xinran Xue & Hui Zhou, 2019. "Design of a New Compressed Air Energy Storage System with Constant Gas Pressure and Temperature for Application in Coal Mine Roadways," Energies, MDPI, vol. 12(21), pages 1-14, November.
  31. Venkataramani, Gayathri & Parankusam, Prasanna & Ramalingam, Velraj & Wang, Jihong, 2016. "A review on compressed air energy storage – A pathway for smart grid and polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 895-907.
  32. Lawrie Swinfen-Styles & Seamus D. Garvey & Donald Giddings & Bruno Cárdenas & James P. Rouse, 2022. "Analysis of a Wind-Driven Air Compression System Utilising Underwater Compressed Air Energy Storage," Energies, MDPI, vol. 15(6), pages 1-28, March.
  33. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.
  34. Gangopadhyay, A. & Seshadri, A.K. & Sparks, N.J. & Toumi, R., 2022. "The role of wind-solar hybrid plants in mitigating renewable energy-droughts," Renewable Energy, Elsevier, vol. 194(C), pages 926-937.
  35. Karaca, Ali Erdogan & Dincer, Ibrahim & Nitefor, Michael, 2023. "A new renewable energy system integrated with compressed air energy storage and multistage desalination," Energy, Elsevier, vol. 268(C).
  36. Peng, Hao & Shan, Xuekun & Yang, Yu & Ling, Xiang, 2018. "A study on performance of a liquid air energy storage system with packed bed units," Applied Energy, Elsevier, vol. 211(C), pages 126-135.
  37. He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
  38. Wan, Yuke & Wu, Chuang & Liu, Yu & Liu, Chao & Li, Hang & Wang, Jiangfeng, 2023. "A technical feasibility study of a liquid carbon dioxide energy storage system: Integrated component design and off-design performance analysis," Applied Energy, Elsevier, vol. 350(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.