IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v64y2014icp1026-1034.html
   My bibliography  Save this item

The changing trend and influencing factors of energy efficiency: The case of nine countries

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Svetlana Vladislavlevna Lobova & Aleksei Valentinovich Bogoviz & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2019. "The Fuel and Energy Complex of Russia: Analyzing Energy Efficiency Policies at the Federal Level," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 205-211.
  2. Adom, Philip Kofi, 2015. "Determinants of energy intensity in South Africa: Testing for structural effects in parameters," Energy, Elsevier, vol. 89(C), pages 334-346.
  3. Adam Dominiak & Artur Rusowicz, 2022. "Change of Fossil-Fuel-Related Carbon Productivity Index of the Main Manufacturing Sectors in Poland," Energies, MDPI, vol. 15(19), pages 1-14, September.
  4. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
  5. Pusnik, M. & Al-Mansour, F. & Sucic, B. & Cesen, M., 2017. "Trends and prospects of energy efficiency development in Slovenian industry," Energy, Elsevier, vol. 136(C), pages 52-62.
  6. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2015. "Evaluating airline efficiency: An application of Virtual Frontier Network SBM," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 1-17.
  7. Fiorentino, Gabriella & Zucaro, Amalia & Ulgiati, Sergio, 2019. "Towards an energy efficient chemistry. Switching from fossil to bio-based products in a life cycle perspective," Energy, Elsevier, vol. 170(C), pages 720-729.
  8. Cui, Qiang & Arjomandi, Amir, 2021. "Airline energy efficiency measures based on an epsilon-based Range-Adjusted Measure model," Energy, Elsevier, vol. 217(C).
  9. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
  10. Hyunjung Kim & Jiyoon Son, 2021. "Analyzing the Environmental Efficiency of Global Airlines by Continent for Sustainability," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
  11. Most. Asikha Aktar & Al-Amrani Khadeem Ali Dhahi & Usman Abdullahi, 2024. "Advancing Sustainable Development through the lens of Energy Efficiency: A Systematic Literature Review," International Journal of Energy Economics and Policy, Econjournals, vol. 14(5), pages 168-180, September.
  12. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
  13. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
  14. Cui, Qiang & Wei, Yi-Ming & Li, Ye, 2016. "Exploring the impacts of the EU ETS emission limits on airline performance via the Dynamic Environmental DEA approach," Applied Energy, Elsevier, vol. 183(C), pages 984-994.
  15. Meng, F.Y. & Zhou, D.Q. & Zhou, P. & Bai, Y., 2014. "Sectoral comparison of electricity-saving potentials in China: An analysis based on provincial input–output tables," Energy, Elsevier, vol. 72(C), pages 772-782.
  16. Du, Kerui & Lin, Boqiang, 2017. "International comparison of total-factor energy productivity growth: A parametric Malmquist index approach," Energy, Elsevier, vol. 118(C), pages 481-488.
  17. Shenglang Yang, 2016. "Intangible capital and sectoral energy intensity: Evidence from 40 economies," ANU Working Papers in Economics and Econometrics 2016-646, Australian National University, College of Business and Economics, School of Economics.
  18. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
  19. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.
  20. Luis Camargo & Daniel Comas & Yulineth Cardenas Escorcia & Anibal Alviz-Meza & Gaylord Carrillo Caballero & Ivan Portnoy, 2022. "Bibliometric Analysis of Global Trends around Hydrogen Production Based on the Scopus Database in the Period 2011–2021," Energies, MDPI, vol. 16(1), pages 1-25, December.
  21. Stuart, Elizabeth & Larsen, Peter H. & Goldman, Charles A. & Gilligan, Donald, 2014. "A method to estimate the size and remaining market potential of the U.S. ESCO (energy service company) industry," Energy, Elsevier, vol. 77(C), pages 362-371.
  22. Lin, Boqiang & Du, Kerui, 2014. "Measuring energy efficiency under heterogeneous technologies using a latent class stochastic frontier approach: An application to Chinese energy economy," Energy, Elsevier, vol. 76(C), pages 884-890.
  23. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures under CNG2020 strategy: An application of a Dynamic By-production model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 130-143.
  24. Tehseen Akhtar & Asif Ur Rehman & Mohsin Jamil & Syed Omer Gilani, 2020. "Impact of an Energy Monitoring System on the Energy Efficiency of an Automobile Factory: A Case Study," Energies, MDPI, vol. 13(10), pages 1-20, May.
  25. Liu, Hongtao & Polenske, Karen R. & Guilhoto, Joaquim José Martins & Xi, Youmin, 2014. "Direct and indirect energy use in China and the United States," Energy, Elsevier, vol. 71(C), pages 414-420.
  26. Ben Abdallah, Khaled & Belloumi, Mounir & De Wolf, Daniel, 2015. "International comparisons of energy and environmental efficiency in the road transport sector," Energy, Elsevier, vol. 93(P2), pages 2087-2101.
  27. Patrick Gasser & Marco Cinelli & Anna Labijak & Matteo Spada & Peter Burgherr & Miłosz Kadziński & Božidar Stojadinović, 2020. "Quantifying Electricity Supply Resilience of Countries with Robust Efficiency Analysis," Energies, MDPI, vol. 13(7), pages 1-35, March.
  28. Hui Hu & Philip Kavan, 2014. "Energy Consumption and Carbon Dioxide Emissions of China’s Non-Metallic Mineral Products Industry: Present State, Prospects and Policy Analysis," Sustainability, MDPI, vol. 6(11), pages 1-17, November.
  29. Wang, Dong, 2014. "A dynamic optimization on economic energy efficiency in development: A numerical case of China," Energy, Elsevier, vol. 66(C), pages 181-188.
  30. Lin, Boqiang & Wang, Ailun, 2015. "Estimating energy conservation potential in China's commercial sector," Energy, Elsevier, vol. 82(C), pages 147-156.
  31. Ji, Zhengsen & Niu, Dongxiao & Li, Wanying & Wu, Gengqi & Yang, Xiaolong & Sun, Lijie, 2022. "Improving the energy efficiency of China: An analysis considering clean energy and fossil energy resources," Energy, Elsevier, vol. 259(C).
  32. Xu, Xin & Cui, Qiang, 2017. "Evaluating airline energy efficiency: An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure," Energy, Elsevier, vol. 122(C), pages 274-286.
  33. Cui, Qiang & Li, Ye, 2015. "Evaluating energy efficiency for airlines: An application of VFB-DEA," Journal of Air Transport Management, Elsevier, vol. 44, pages 34-41.
  34. Vaclovas Miskinis & Arvydas Galinis & Viktorija Bobinaite & Inga Konstantinaviciute & Eimantas Neniskis, 2023. "Impact of Key Drivers on Energy Intensity and GHG Emissions in Manufacturing in the Baltic States," Sustainability, MDPI, vol. 15(4), pages 1-25, February.
  35. Salehi, Mohammad & Khajehpour, Hossein & Saboohi, Yadollah, 2020. "Extended Energy Return on Investment of multiproduct energy systems," Energy, Elsevier, vol. 192(C).
  36. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures using a Dynamic Epsilon-Based Measure model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 121-134.
  37. Liu, Wei & Zhan, Jinyan & Zhao, Fen & Wang, Pei & Li, Zhihui & Teng, Yanmin, 2018. "Changing trends and influencing factors of energy productivity growth: A case study in the Pearl River Delta Metropolitan Region," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 1-9.
  38. Fei Ma & Xiaodan Li & Qipeng Sun & Fei Liu & Wenlin Wang & Libiao Bai, 2018. "Regional Differences and Spatial Aggregation of Sustainable Transport Efficiency: A Case Study of China," Sustainability, MDPI, vol. 10(7), pages 1-23, July.
  39. Samet, Haidar & Ghanbari, Teymoor & Ghaisari, Jafar, 2014. "Maximizing the transferred power to electric arc furnace for having maximum production," Energy, Elsevier, vol. 72(C), pages 752-759.
  40. Cui, Qiang & Li, Ye, 2015. "An empirical study on the influencing factors of transportation carbon efficiency: Evidences from fifteen countries," Applied Energy, Elsevier, vol. 141(C), pages 209-217.
  41. Li, Ke & Lin, Boqiang, 2017. "An application of a double bootstrap to investigate the effects of technological progress on total-factor energy consumption performance in China," Energy, Elsevier, vol. 128(C), pages 575-585.
  42. Cui, Qiang & Li, Ye & Lin, Jing-ling, 2018. "Pollution abatement costs change decomposition for airlines: An analysis from a dynamic perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 96-107.
  43. Ying Li & Yung-ho Chiu & Liang Chun Lu, 2019. "New Energy Development and Pollution Emissions in China," IJERPH, MDPI, vol. 16(10), pages 1-24, May.
  44. Ding, Li-Li & Lei, Liang & Zhao, Xin & Calin, Adrian Cantemir, 2020. "Modelling energy and carbon emission performance: A constrained performance index measure," Energy, Elsevier, vol. 197(C).
  45. Ye Li & Qiang Cui, 2017. "Airline energy efficiency measures using the Virtual Frontier Network RAM with weak disposability," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(4), pages 479-504, May.
  46. Zhaoqiang Zhong & Benhong Peng & Ehsan Elahi, 2021. "Spatial and temporal pattern evolution and influencing factors of energy–environmental efficiency: A case study of Yangtze River urban agglomeration in China," Energy & Environment, , vol. 32(2), pages 242-261, March.
  47. Takayabu, Hirotaka, 2020. "CO2 mitigation potentials in manufacturing sectors of 26 countries," Energy Economics, Elsevier, vol. 86(C).
  48. Fang-Rong Ren & Ze Tian & Yu-Ting Shen & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Energy, CO 2 , and AQI Efficiency and Improvement of the Yangtze River Economic Belt," Energies, MDPI, vol. 12(4), pages 1-17, February.
  49. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
  50. Peng, Lihong & Zhang, Yiting & Wang, Yejun & Zeng, Xiaoling & Peng, Najun & Yu, Ang, 2015. "Energy efficiency and influencing factor analysis in the overall Chinese textile industry," Energy, Elsevier, vol. 93(P1), pages 1222-1229.
  51. Liu, Xiuli & Moreno, Blanca & García, Ana Salomé, 2016. "A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors," Energy, Elsevier, vol. 115(P1), pages 1042-1054.
  52. Cui, Qiang, 2021. "A data-based comparison of the five undesirable output disposability approaches in airline environmental efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.