IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v32y2021i2p242-261.html
   My bibliography  Save this article

Spatial and temporal pattern evolution and influencing factors of energy–environmental efficiency: A case study of Yangtze River urban agglomeration in China

Author

Listed:
  • Zhaoqiang Zhong
  • Benhong Peng
  • Ehsan Elahi

Abstract

Improving energy–environmental efficiency is prerequisite for sustainable development. In order to explore ways to improve energy–environmental efficiency, this paper uses the undesired output slack-based model to measure the energy–environmental efficiency of the Yangtze River urban agglomeration based on the input and output index data from 2008 to 2017, and its spatial and temporal pattern evolution is analyzed by using kernel density estimation, Gini coefficient, and coefficient of variation. Moreover, the Tobit regression model is used to analyze the influencing factors of the energy–environmental efficiency of the Yangtze River urban agglomeration. The results indicate that the energy–environmental efficiency of each city is increased continuously, and the regional differences are gradually narrowed. The spatial pattern is changed from polar nucleus type to valley type, and finally the distribution characteristics of “overall high†are formed. Overall, the energy–environmental efficiency presents a spatial layout of “high in the east and low in the west.†The regression results show that the level of economic development and energy–environmental efficiency are “U-type†associated characteristics, and government regulation and population density have significant positive effects on it. Industrial structure and technological progress have negative effects on it, and the effect of opening degree is not significant.

Suggested Citation

  • Zhaoqiang Zhong & Benhong Peng & Ehsan Elahi, 2021. "Spatial and temporal pattern evolution and influencing factors of energy–environmental efficiency: A case study of Yangtze River urban agglomeration in China," Energy & Environment, , vol. 32(2), pages 242-261, March.
  • Handle: RePEc:sae:engenv:v:32:y:2021:i:2:p:242-261
    DOI: 10.1177/0958305X20923114
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X20923114
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X20923114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dorian, James P. & Franssen, Herman T. & Simbeck, Dale R., 2006. "Global challenges in energy," Energy Policy, Elsevier, vol. 34(15), pages 1984-1991, October.
    2. Vaninsky, Alexander, 2018. "Energy-environmental efficiency and optimal restructuring of the global economy," Energy, Elsevier, vol. 153(C), pages 338-348.
    3. Elahi, Ehsan & Weijun, Cui & Zhang, Huiming & Nazeer, Majid, 2019. "Agricultural intensification and damages to human health in relation to agrochemicals: Application of artificial intelligence," Land Use Policy, Elsevier, vol. 83(C), pages 461-474.
    4. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    5. P. Zhou & F. Wu & D. Q. Zhou, 2017. "Total-factor energy efficiency with congestion," Annals of Operations Research, Springer, vol. 255(1), pages 241-256, August.
    6. Sun, Huaping & Edziah, Bless Kofi & Sun, Chuanwang & Kporsu, Anthony Kwaku, 2019. "Institutional quality, green innovation and energy efficiency," Energy Policy, Elsevier, vol. 135(C).
    7. Borozan, Djula, 2018. "Technical and total factor energy efficiency of European regions: A two-stage approach," Energy, Elsevier, vol. 152(C), pages 521-532.
    8. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    9. Mandal, Sabuj Kumar, 2010. "Do undesirable output and environmental regulation matter in energy efficiency analysis? Evidence from Indian Cement Industry," Energy Policy, Elsevier, vol. 38(10), pages 6076-6083, October.
    10. Cui, Qiang & Kuang, Hai-bo & Wu, Chun-you & Li, Ye, 2014. "The changing trend and influencing factors of energy efficiency: The case of nine countries," Energy, Elsevier, vol. 64(C), pages 1026-1034.
    11. Alwyn Young, 2003. "Gold into Base Metals: Productivity Growth in the People's Republic of China during the Reform Period," Journal of Political Economy, University of Chicago Press, vol. 111(6), pages 1220-1261, December.
    12. Li, Lan-Bing & Hu, Jin-Li, 2012. "Ecological total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 46(C), pages 216-224.
    13. Yun Zheng & Jie Huang & Jianfeng Wang, 2018. "Factors influencing the spatial correlation network of energy environmental efficiency," Proceedings of International Academic Conferences 7208749, International Institute of Social and Economic Sciences.
    14. Chang, Chun-Ping & Wen, Jun & Zheng, Mingbo & Dong, Minyi & Hao, Yu, 2018. "Is higher government efficiency conducive to improving energy use efficiency? Evidence from OECD countries," Economic Modelling, Elsevier, vol. 72(C), pages 65-77.
    15. Elahi, Ehsan & Weijun, Cui & Jha, Sunil Kumar & Zhang, Huiming, 2019. "Estimation of realistic renewable and non-renewable energy use targets for livestock production systems utilising an artificial neural network method: A step towards livestock sustainability," Energy, Elsevier, vol. 183(C), pages 191-204.
    16. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
    17. Elahi, Ehsan & Abid, Muhammad & Zhang, Liqin & ul Haq, Shams & Sahito, Jam Ghulam Murtaza, 2018. "Agricultural advisory and financial services; farm level access, outreach and impact in a mixed cropping district of Punjab, Pakistan," Land Use Policy, Elsevier, vol. 71(C), pages 249-260.
    18. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    19. Yao, Xin & Zhou, Hongchen & Zhang, Aizhen & Li, Aijun, 2015. "Regional energy efficiency, carbon emission performance and technology gaps in China: A meta-frontier non-radial directional distance function analysis," Energy Policy, Elsevier, vol. 84(C), pages 142-154.
    20. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongxia Zhang & Zixuan Sun & Ehsan Elahi & Yuge Zhang, 2021. "Internet Development, Level of Industrial Synergy, and Urban Innovation," Sustainability, MDPI, vol. 13(22), pages 1-12, November.
    2. Fushuai Wang & Wenxia Cai & Ehsan Elahi, 2021. "Do Green Finance and Environmental Regulation Play a Crucial Role in the Reduction of CO 2 Emissions? An Empirical Analysis of 126 Chinese Cities," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    3. Hao, Xiaoli & Wen, Shufang & Xue, Yan & Wu, Haitao & Hao, Yu, 2023. "How to improve environment, resources and economic efficiency in the digital era?," Resources Policy, Elsevier, vol. 80(C).
    4. Lei Zhu & Jing Hu & Jiahui Xu & Yannan Li & Mangmang Liang, 2022. "Spatial Distribution Characteristics and Influencing Factors of Pro-Poor Tourism Villages in China," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    5. Peng, Benhong & Zhao, Yinyin & Elahi, Ehsan & Wan, Anxia, 2022. "Pathway and key factor identification of third-party market cooperation of China's overseas energy investment projects," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    6. Dongdong Ma & Guifang Li & Feng He, 2021. "Exploring PM2.5 Environmental Efficiency and Its Influencing Factors in China," IJERPH, MDPI, vol. 18(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
    2. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    3. Lei, Ming & Yin, Zihan & Yu, Xiaowen & Deng, Shijie, 2017. "Carbon-weighted economic development performance and driving force analysis: Evidence from China," Energy Policy, Elsevier, vol. 111(C), pages 179-192.
    4. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    5. Wu, Haitao & Hao, Yu & Ren, Siyu, 2020. "How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China," Energy Economics, Elsevier, vol. 91(C).
    6. Ying Li & Yung-Ho Chiu & Liang Chun Lu, 2018. "Regional Energy, CO 2 , and Economic and Air Quality Index Performances in China: A Meta-Frontier Approach," Energies, MDPI, vol. 11(8), pages 1-20, August.
    7. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    8. Ding, Li-Li & Lei, Liang & Zhao, Xin & Calin, Adrian Cantemir, 2020. "Modelling energy and carbon emission performance: A constrained performance index measure," Energy, Elsevier, vol. 197(C).
    9. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    10. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    11. Shuangjie Li & Hongyu Diao & Liming Wang & Chunqi Li, 2021. "Energy Efficiency Measurement: A VO TFEE Approach and Its Application," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    12. Ze Tian & Fang-Rong Ren & Qin-Wen Xiao & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Cross-Regional Comparative Study on Carbon Emission Efficiency of China’s Yangtze River Economic Belt Based on the Meta-Frontier," IJERPH, MDPI, vol. 16(4), pages 1-19, February.
    13. Napolitano, Oreste & Foresti, Pasquale & Kounetas, Konstantinos & Spagnolo, Nicola, 2023. "The impact of energy, renewable and CO2 emissions efficiency on countries’ productivity," Energy Economics, Elsevier, vol. 125(C).
    14. Li, Jianglong & Lin, Boqiang, 2017. "Ecological total-factor energy efficiency of China's heavy and light industries: Which performs better?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 83-94.
    15. Liang Chun Lu & Yung-ho Chiu & Shih-Yung Chiu & Tzu-Han Chang, 2022. "Do Forests help environmental development of Cities in China?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6602-6629, May.
    16. Ping Wang & Bangzhu Zhu & Xueping Tao & Rui Xie, 2017. "Measuring regional energy efficiencies in China: a meta-frontier SBM-Undesirable approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 793-809, January.
    17. Peng, Benhong & Wang, Yuanyuan & Wei, Guo, 2020. "Energy eco-efficiency: Is there any spatial correlation between different regions?," Energy Policy, Elsevier, vol. 140(C).
    18. Yiwen Bian & Kangjuan Lv & Anyu Yu, 2017. "China’s regional energy and carbon dioxide emissions efficiency evaluation with the presence of recovery energy: an interval slacks-based measure approach," Annals of Operations Research, Springer, vol. 255(1), pages 301-321, August.
    19. Fan, Di & Peng, Bo & Wu, Jianxin & Zhang, ZhongXiang, 2024. "The convergence of total-factor energy efficiency across Chinese cities: A distribution dynamics approach," Structural Change and Economic Dynamics, Elsevier, vol. 69(C), pages 406-416.
    20. Fang-Rong Ren & Ze Tian & Yu-Ting Shen & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Energy, CO 2 , and AQI Efficiency and Improvement of the Yangtze River Economic Belt," Energies, MDPI, vol. 12(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:32:y:2021:i:2:p:242-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.