My bibliography
Save this item
Thermodynamic analysis and optimization of an ammonia-water power system with LNG (liquefied natural gas) as its heat sink
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Szczygieł, Ireneusz & Stanek, Wojciech & Szargut, Jan, 2016. "Application of the Stirling engine driven with cryogenic exergy of LNG (liquefied natural gas) for the production of electricity," Energy, Elsevier, vol. 105(C), pages 25-31.
- Lee, Ung & Kim, Kyeongsu & Han, Chonghun, 2014. "Design and optimization of multi-component organic rankine cycle using liquefied natural gas cryogenic exergy," Energy, Elsevier, vol. 77(C), pages 520-532.
- Dong, Hui & Zhao, Liang & Zhang, Songyuan & Wang, Aihua & Cai, Jiuju, 2013. "Using cryogenic exergy of liquefied natural gas for electricity production with the Stirling cycle," Energy, Elsevier, vol. 63(C), pages 10-18.
- Ebrahimi, Armin & Ziabasharhagh, Masoud, 2017. "Optimal design and integration of a cryogenic Air Separation Unit (ASU) with Liquefied Natural Gas (LNG) as heat sink, thermodynamic and economic analyses," Energy, Elsevier, vol. 126(C), pages 868-885.
- Sun, Zhixin & Lai, Jianpeng & Wang, Shujia & Wang, Tielong, 2018. "Thermodynamic optimization and comparative study of different ORC configurations utilizing the exergies of LNG and low grade heat of different temperatures," Energy, Elsevier, vol. 147(C), pages 688-700.
- Özen, Dilek Nur & Koçak, Betül, 2022. "Advanced exergy and exergo-economic analyses of a novel combined power system using the cold energy of liquefied natural gas," Energy, Elsevier, vol. 248(C).
- Choi, In-Hwan & Lee, Sangick & Seo, Yutaek & Chang, Daejun, 2013. "Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 61(C), pages 179-195.
- Lee, Ung & Jeon, Jeongwoo & Han, Chonghun & Lim, Youngsub, 2017. "Superstructure based techno-economic optimization of the organic rankine cycle using LNG cryogenic energy," Energy, Elsevier, vol. 137(C), pages 83-94.
- Ibrahim, Amin & Rahnamayan, Shahryar & Vargas Martin, Miguel & Yilbas, Bekir, 2014. "Multi-objective thermal analysis of a thermoelectric device: Influence of geometric features on device characteristics," Energy, Elsevier, vol. 77(C), pages 305-317.
- Yoonho, Lee, 2019. "LNG-FSRU cold energy recovery regasification using a zeotropic mixture of ethane and propane," Energy, Elsevier, vol. 173(C), pages 857-869.
- Liu, Peng & Yang, Tianyan & Zheng, Hongbin & Huang, Xiang & Wang, Xuan & Qiu, Tian & Ding, Shuiting, 2024. "Thermodynamic analysis of power generation thermal management system for heat and cold exergy utilization from liquid hydrogen-fueled turbojet engine," Applied Energy, Elsevier, vol. 365(C).
- Larsen, Ulrik & Nguyen, Tuong-Van & Knudsen, Thomas & Haglind, Fredrik, 2014. "System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines," Energy, Elsevier, vol. 64(C), pages 484-494.
- Sun, Heng & Zhu, Hongmei & Liu, Feng & Ding, He, 2014. "Simulation and optimization of a novel Rankine power cycle for recovering cold energy from liquefied natural gas using a mixed working fluid," Energy, Elsevier, vol. 70(C), pages 317-324.
- Kim, Kyeongsu & Lee, Ung & Kim, Changsoo & Han, Chonghun, 2015. "Design and optimization of cascade organic Rankine cycle for recovering cryogenic energy from liquefied natural gas using binary working fluid," Energy, Elsevier, vol. 88(C), pages 304-313.
- Mohammad shafie, Mohammad & Ali rajabipour, & Mehrpooya, Mehdi, 2022. "Investigation of an electrochemical conversion of carbon dioxide to ethanol and solid oxide fuel cell, gas turbine hybrid process," Renewable Energy, Elsevier, vol. 184(C), pages 1112-1129.
- Hou, Mingyu & Wu, Zhanghua & Yu, Guoyao & Hu, Jianying & Luo, Ercang, 2018. "A thermoacoustic Stirling electrical generator for cold exergy recovery of liquefied nature gas," Applied Energy, Elsevier, vol. 226(C), pages 389-396.
- Jie Ren & Zuoqin Qian & Zhimin Yao & Nianzhong Gan & Yujia Zhang, 2019. "Thermodynamic Evaluation of LiCl-H 2 O and LiBr-H 2 O Absorption Refrigeration Systems Based on a Novel Model and Algorithm," Energies, MDPI, vol. 12(15), pages 1-28, August.
- Lee, Sangick, 2017. "Multi-parameter optimization of cold energy recovery in cascade Rankine cycle for LNG regasification using genetic algorithm," Energy, Elsevier, vol. 118(C), pages 776-782.
- Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan & Simonson, Carey James, 2022. "Designing and thermodynamic optimization of a novel combined absorption cooling and power cycle based on a water-ammonia mixture," Energy, Elsevier, vol. 253(C).
- Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
- Xue, Feier & Chen, Yu & Ju, Yonglin, 2017. "Design and optimization of a novel cryogenic Rankine power generation system employing binary and ternary mixtures as working fluids based on the cold exergy utilization of liquefied natural gas (LNG)," Energy, Elsevier, vol. 138(C), pages 706-720.
- Choi, Hong Wone & Na, Sun-Ik & Hong, Sung Bin & Chung, Yoong & Kim, Dong Kyu & Kim, Min Soo, 2021. "Optimal design of organic Rankine cycle recovering LNG cold energy with finite heat exchanger size," Energy, Elsevier, vol. 217(C).
- Habibi, Hamed & Chitsaz, Ata & Javaherdeh, Koroush & Zoghi, Mohammad & Ayazpour, Mojtaba, 2018. "Thermo-economic analysis and optimization of a solar-driven ammonia-water regenerative Rankine cycle and LNG cold energy," Energy, Elsevier, vol. 149(C), pages 147-160.
- Saffari, Hamid & Sadeghi, Sadegh & Khoshzat, Mohsen & Mehregan, Pooyan, 2016. "Thermodynamic analysis and optimization of a geothermal Kalina cycle system using Artificial Bee Colony algorithm," Renewable Energy, Elsevier, vol. 89(C), pages 154-167.
- Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2020. "Optimization of an improved power cycle for geothermal applications in Iran," Energy, Elsevier, vol. 209(C).
- Chen, Xiaohui & Zheng, Danxing & Chen, Juan, 2014. "An approach to obtain Heat Integration scheme with higher viability for complex system," Energy, Elsevier, vol. 78(C), pages 720-731.
- Li, Yongyi & Liu, Yujia & Zhang, Guoqiang & Yang, Yongping, 2020. "Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat," Energy, Elsevier, vol. 199(C).
- Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
- Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2021. "Multi-objective optimization of a novel offshore CHP plant based on a 3E analysis," Energy, Elsevier, vol. 224(C).
- He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
- Zhang, Tong & Chen, Laijun & Zhang, Xuelin & Mei, Shengwei & Xue, Xiaodai & Zhou, Yuan, 2018. "Thermodynamic analysis of a novel hybrid liquid air energy storage system based on the utilization of LNG cold energy," Energy, Elsevier, vol. 155(C), pages 641-650.
- Romero Gómez, M. & Ferreiro Garcia, R. & Romero Gómez, J. & Carbia Carril, J., 2014. "Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 781-795.
- Badami, Marco & Bruno, Juan Carlos & Coronas, Alberto & Fambri, Gabriele, 2018. "Analysis of different combined cycles and working fluids for LNG exergy recovery during regasification," Energy, Elsevier, vol. 159(C), pages 373-384.
- Mohd Amin Abd Majid & Hamdan Haji Ya & Othman Mamat & Shuhaimi Mahadzir, 2019. "Techno Economic Evaluation of Cold Energy from Malaysian Liquefied Natural Gas Regasification Terminals," Energies, MDPI, vol. 12(23), pages 1-14, November.
- Domingues, António & Matos, Henrique A. & Pereira, Pedro M., 2022. "Novel integrated system of LNG regasification / electricity generation based on a cascaded two-stage Rankine cycle, with ternary mixtures as working fluids and seawater as hot utility," Energy, Elsevier, vol. 238(PC).
- Gómez, Manuel Romero & Garcia, Ramón Ferreiro & Gómez, Javier Romero & Carril, José Carbia, 2014. "Thermodynamic analysis of a Brayton cycle and Rankine cycle arranged in series exploiting the cold exergy of LNG (liquefied natural gas)," Energy, Elsevier, vol. 66(C), pages 927-937.