IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v36y2011i11p6406-6412.html
   My bibliography  Save this item

Comparative studies of thermochemical liquefaction characteristics of microalgae using different organic solvents

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Isa, Khairuddin Md & Abdullah, Tuan Amran Tuan & Ali, Umi Fazara Md, 2018. "Hydrogen donor solvents in liquefaction of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1259-1268.
  2. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  3. Mahdy, Ahmed & Mendez, Lara & Ballesteros, Mercedes & González-Fernández, Cristina, 2014. "Autohydrolysis and alkaline pretreatment effect on Chlorella vulgaris and Scenedesmus sp. methane production," Energy, Elsevier, vol. 78(C), pages 48-52.
  4. Mumtaz, Hamza & Sobek, Szymon & Sajdak, Marcin & Muzyka, Roksana & Drewniak, Sabina & Werle, Sebastian, 2023. "Oxidative liquefaction as an alternative method of recycling and the pyrolysis kinetics of wind turbine blades," Energy, Elsevier, vol. 278(PB).
  5. Baloch, Humair Ahmed & Nizamuddin, Sabzoi & Siddiqui, M.T.H. & Mubarak, N.M. & Mazari, Shaukat & Griffin, G.J. & Srinivasan, M.P., 2020. "Co-liquefaction of synthetic polyethylene and polyethylene bags with sugarcane bagasse under supercritical conditions: A comparative study," Renewable Energy, Elsevier, vol. 162(C), pages 2397-2407.
  6. Liu, Guangmin & Qiao, Lina & Zhang, Hong & Zhao, Dan & Su, Xudong, 2014. "The effects of illumination factors on the growth and HCO3− fixation of microalgae in an experiment culture system," Energy, Elsevier, vol. 78(C), pages 40-47.
  7. Bi, Zheting & Zhang, Ji & Zhu, Zeying & Liang, Yanna & Wiltowski, Tomasz, 2018. "Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction," Applied Energy, Elsevier, vol. 209(C), pages 435-444.
  8. Ratha, Sachitra Kumar & Renuka, Nirmal & Abunama, Taher & Rawat, Ismail & Bux, Faizal, 2022. "Hydrothermal liquefaction of algal feedstocks: The effect of biomass characteristics and extraction solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  9. Saber, Mohammad & Nakhshiniev, Bakhtiyor & Yoshikawa, Kunio, 2016. "A review of production and upgrading of algal bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 918-930.
  10. Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
  11. Gurung, Anup & Van Ginkel, Steven W. & Kang, Woo-Chang & Qambrani, Naveed Ahmed & Oh, Sang-Eun, 2012. "Evaluation of marine biomass as a source of methane in batch tests: A lab-scale study," Energy, Elsevier, vol. 43(1), pages 396-401.
  12. Duan, Yibing & He, Zhixia & Zhang, Bo & Wang, Bin & Zhang, Feiyang, 2022. "Synergistic effect of hydrothermal co-liquefaction of Camellia oleifera Abel and Spirulina platensis: Parameters optimization and product characteristics," Renewable Energy, Elsevier, vol. 186(C), pages 26-34.
  13. Hu, Yulin & Gong, Mengyue & Feng, Shanghuan & Xu, Chunbao (Charles) & Bassi, Amarjeet, 2019. "A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 476-492.
  14. Guo, Yang & Yeh, Thomas & Song, Wenhan & Xu, Donghai & Wang, Shuzhong, 2015. "A review of bio-oil production from hydrothermal liquefaction of algae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 776-790.
  15. Xu, Donghai & Lin, Guike & Liu, Liang & Wang, Yang & Jing, Zefeng & Wang, Shuzhong, 2018. "Comprehensive evaluation on product characteristics of fast hydrothermal liquefaction of sewage sludge at different temperatures," Energy, Elsevier, vol. 159(C), pages 686-695.
  16. Yuan, Chuan & Wang, Shuang & Cao, Bin & Hu, Yamin & Abomohra, Abd El-Fatah & Wang, Qian & Qian, Lili & Liu, Lu & Liu, Xinlin & He, Zhixia & Sun, Chaoqun & Feng, Yongqiang & Zhang, Bo, 2019. "Optimization of hydrothermal co-liquefaction of seaweeds with lignocellulosic biomass: Merging 2nd and 3rd generation feedstocks for enhanced bio-oil production," Energy, Elsevier, vol. 173(C), pages 413-422.
  17. Li, Qingyin & Zhang, Shu & Wang, Yi & Xiang, Jun & Hu, Song & Yuan, Xiangzhou & Gholizadeh, Mortaza & Hu, Xun, 2021. "Ionic liquid coupled with nickel salt for enhancing the hydro-liquefaction efficiency of the major biomass components," Renewable Energy, Elsevier, vol. 175(C), pages 296-306.
  18. Brand, Steffen & Susanti, Ratna Frida & Kim, Seok Ki & Lee, Hong-shik & Kim, Jaehoon & Sang, Byung-In, 2013. "Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: Influence of physical process parameters," Energy, Elsevier, vol. 59(C), pages 173-182.
  19. Leng, Lijian & Li, Hui & Yuan, Xingzhong & Zhou, Wenguang & Huang, Huajun, 2018. "Bio-oil upgrading by emulsification/microemulsification: A review," Energy, Elsevier, vol. 161(C), pages 214-232.
  20. Xu, Donghai & Wang, Yang & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Wu, Zhiqiang, 2019. "Co-hydrothermal liquefaction of microalgae and sewage sludge in subcritical water: Ash effects on bio-oil production," Renewable Energy, Elsevier, vol. 138(C), pages 1143-1151.
  21. Lee, Jechan & Choi, Dongho & Kwon, Eilhann E. & Ok, Yong Sik, 2017. "Functional modification of hydrothermal liquefaction products of microalgal biomass using CO2," Energy, Elsevier, vol. 137(C), pages 412-418.
  22. Tian, Chunyan & Li, Baoming & Liu, Zhidan & Zhang, Yuanhui & Lu, Haifeng, 2014. "Hydrothermal liquefaction for algal biorefinery: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 933-950.
  23. Chen, Haitao & He, Zhixia & Zhang, Bo & Feng, Huan & Kandasamy, Sabariswaran & Wang, Bin, 2019. "Effects of the aqueous phase recycling on bio-oil yield in hydrothermal liquefaction of Spirulina Platensis, α-cellulose, and lignin," Energy, Elsevier, vol. 179(C), pages 1103-1113.
  24. Chang, Yuanyuan & Wu, Zucheng & Bian, Lei & Feng, Daolun & Leung, Dennis Y.C., 2013. "Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine," Applied Energy, Elsevier, vol. 102(C), pages 427-431.
  25. Bahadar, Ali & Bilal Khan, M., 2013. "Progress in energy from microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 128-148.
  26. Xia, Ao & Cheng, Jun & Ding, Lingkan & Lin, Richen & Song, Wenlu & Zhou, Junhu & Cen, Kefa, 2014. "Effects of changes in microbial community on the fermentative production of hydrogen and soluble metabolites from Chlorella pyrenoidosa biomass in semi-continuous operation," Energy, Elsevier, vol. 68(C), pages 982-988.
  27. Huang, Hua-jun & Yuan, Xing-zhong & Zhu, Hui-na & Li, Hui & Liu, Yan & Wang, Xue-li & Zeng, Guang-ming, 2013. "Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge," Energy, Elsevier, vol. 56(C), pages 52-60.
  28. Hu, Zhiquan & Zheng, Yang & Yan, Feng & Xiao, Bo & Liu, Shiming, 2013. "Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization," Energy, Elsevier, vol. 52(C), pages 119-125.
  29. Lai, Fa-ying & Chang, Yan-chao & Huang, Hua-jun & Wu, Guo-qiang & Xiong, Jiang-bo & Pan, Zi-qian & Zhou, Chun-fei, 2018. "Liquefaction of sewage sludge in ethanol-water mixed solvents for bio-oil and biochar products," Energy, Elsevier, vol. 148(C), pages 629-641.
  30. Wang, Bin & He, Zhixia & Zhang, Bo & Duan, Yibing, 2021. "Study on hydrothermal liquefaction of spirulina platensis using biochar based catalysts to produce bio-oil," Energy, Elsevier, vol. 230(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.