IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v36y2011i10p6146-6155.html
   My bibliography  Save this item

Influence of direct reduced iron on the energy balance of the electric arc furnace in steel industry

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Anissa Nurdiawati & Frauke Urban, 2021. "Towards Deep Decarbonisation of Energy-Intensive Industries: A Review of Current Status, Technologies and Policies," Energies, MDPI, vol. 14(9), pages 1-33, April.
  2. Qiu, Ziyang & Du, Tao & Yue, Qiang & Na, Hongming & Sun, Jingchao & Yuan, Yuxing & Che, Zichang & Wang, Yisong & Li, Yingnan, 2023. "A multi-parameters evaluation on exergy for hydrogen metallurgy," Energy, Elsevier, vol. 281(C).
  3. Rainer Radloff & Ali Abdelshafy & Grit Walther, 2023. "An integrative and prospective approach to regional material flow analysis: Modeling the decarbonization of the North Rhine‐Westphalian steel industry," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 662-675, June.
  4. Bhardwaj, Nishant & Seethamraju, Srinivas & Bandyopadhyay, Santanu, 2024. "Decarbonizing rotary kiln–induction furnace based sponge iron production," Energy, Elsevier, vol. 306(C).
  5. Bożena Gajdzik & Radosław Wolniak & Wies Grebski, 2023. "Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry," Energies, MDPI, vol. 16(8), pages 1-36, April.
  6. Haobo Xu & Zhenguo Shao & Feixiong Chen, 2019. "Data-Driven Compartmental Modeling Method for Harmonic Analysis—A Study of the Electric Arc Furnace," Energies, MDPI, vol. 12(22), pages 1-15, November.
  7. Julian Suer & Marzia Traverso & Nils Jäger, 2022. "Review of Life Cycle Assessments for Steel and Environmental Analysis of Future Steel Production Scenarios," Sustainability, MDPI, vol. 14(21), pages 1-22, October.
  8. Manojlović, Vaso & Kamberović, Željko & Korać, Marija & Dotlić, Milan, 2022. "Machine learning analysis of electric arc furnace process for the evaluation of energy efficiency parameters," Applied Energy, Elsevier, vol. 307(C).
  9. Qiu, Ziyang & Yue, Qiang & Yan, Tianyi & Wang, Qi & Sun, Jingchao & Yuan, Yuxing & Che, Zichang & Wang, Yisong & Du, Tao, 2023. "Gas utilization optimization and exergy analysis of hydrogen metallurgical shaft furnace," Energy, Elsevier, vol. 263(PC).
  10. Preis, Philipp, 2023. "Turning German Steel Production Green: Quantifying Diffusion Scenarios for Hydrogen-Based Steelmaking and Policy Implications," Junior Management Science (JUMS), Junior Management Science e. V., vol. 8(3), pages 682-716.
  11. Vaishnavi Vijay Rajulwar & Tetiana Shyrokykh & Robert Stirling & Tova Jarnerud & Yuri Korobeinikov & Sudip Bose & Basudev Bhattacharya & Debashish Bhattacharjee & Seetharaman Sridhar, 2023. "Steel, Aluminum, and FRP-Composites: The Race to Zero Carbon Emissions," Energies, MDPI, vol. 16(19), pages 1-30, September.
  12. Alla Toktarova & Ida Karlsson & Johan Rootzén & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2020. "Pathways for Low-Carbon Transition of the Steel Industry—A Swedish Case Study," Energies, MDPI, vol. 13(15), pages 1-18, July.
  13. Hasanbeigi, Ali & Arens, Marlene & Cardenas, Jose Carlos Rojas & Price, Lynn & Triolo, Ryan, 2016. "Comparison of carbon dioxide emissions intensity of steel production in China, Germany, Mexico, and the United States," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 127-139.
  14. Lechtenböhmer, Stefan & Nilsson, Lars J. & Åhman, Max & Schneider, Clemens, 2016. "Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand," Energy, Elsevier, vol. 115(P3), pages 1623-1631.
  15. Ansari, Nastaran & Seifi, Abbas, 2012. "A system dynamics analysis of energy consumption and corrective policies in Iranian iron and steel industry," Energy, Elsevier, vol. 43(1), pages 334-343.
  16. Haikarainen, Carl & Shao, Lei & Pettersson, Frank & Saxén, Henrik, 2024. "Mathematical optimization modeling for scenario analysis of integrated steelworks transitioning towards hydrogen-based reduction," Energy, Elsevier, vol. 305(C).
  17. Chen, Jingwei & Huang, Yizhen & Liu, Yang & Jiaqiang, E., 2024. "System development and thermodynamic performance analysis of a system integrating supercritical water gasification of black liquor with direct-reduced iron process," Energy, Elsevier, vol. 295(C).
  18. Chen, Zhengjie & Ma, Wenhui & Wu, Jijun & Wei, Kuixian & Yang, Xi & Lv, Guoqiang & Xie, Keqiang & Yu, Jie, 2016. "Influence of carbothermic reduction on submerged arc furnace energy efficiency during silicon production," Energy, Elsevier, vol. 116(P1), pages 687-693.
  19. Kovačič, Miha & Šarler, Božidar, 2014. "Genetic programming prediction of the natural gas consumption in a steel plant," Energy, Elsevier, vol. 66(C), pages 273-284.
  20. Samet, Haidar & Ghanbari, Teymoor & Ghaisari, Jafar, 2014. "Maximizing the transferred power to electric arc furnace for having maximum production," Energy, Elsevier, vol. 72(C), pages 752-759.
  21. Sébastien Pissot & Henrik Thunman & Peter Samuelsson & Martin Seemann, 2021. "Production of Negative-Emissions Steel Using a Reducing Gas Derived from DFB Gasification," Energies, MDPI, vol. 14(16), pages 1-32, August.
  22. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  23. Yuan, Peng & Shen, Boxiong & Duan, Dongping & Adwek, George & Mei, Xue & Lu, Fengju, 2017. "Study on the formation of direct reduced iron by using biomass as reductants of carbon containing pellets in RHF process," Energy, Elsevier, vol. 141(C), pages 472-482.
  24. Gajic, Dragoljub & Savic-Gajic, Ivana & Savic, Ivan & Georgieva, Olga & Di Gennaro, Stefano, 2016. "Modelling of electrical energy consumption in an electric arc furnace using artificial neural networks," Energy, Elsevier, vol. 108(C), pages 132-139.
  25. Chepeliev, Maksym & Aguiar, Angel & Farole, Thomas & Liverani, Andrea & van der Mensbrugghe, Dominique, 2022. "EU Green Deal and Circular Economy Transition: Impacts and Interactions," Conference papers 333431, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  26. Jie Yang & Shaowen Lu & Liangyong Wang, 2020. "Fused magnesia manufacturing process: a survey," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 327-350, February.
  27. Haendel, Michael & Hirzel, Simon & Süß, Marlene, 2022. "Economic optima for buffers in direct reduction steelmaking under increasing shares of renewable hydrogen," Renewable Energy, Elsevier, vol. 190(C), pages 1100-1111.
  28. Shiva Noori & Gijsbert Korevaar & Rob Stikkelman & Andrea Ramírez, 2023. "Exploring the emergence of waste recovery and exchange in industrial clusters," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 937-950, June.
  29. Raul Garcia-Segura & Javier Vázquez Castillo & Fernando Martell-Chavez & Omar Longoria-Gandara & Jaime Ortegón Aguilar, 2017. "Electric Arc Furnace Modeling with Artificial Neural Networks and Arc Length with Variable Voltage Gradient," Energies, MDPI, vol. 10(9), pages 1-11, September.
  30. Trejo, Eder & Martell, Fernando & Micheloud, Osvaldo & Teng, Lidong & Llamas, Armando & Montesinos-Castellanos, Alejandro, 2012. "A novel estimation of electrical and cooling losses in electric arc furnaces," Energy, Elsevier, vol. 42(1), pages 446-456.
  31. Sheinbaum-Pardo, Claudia, 2016. "Decomposition analysis from demand services to material production: The case of CO2 emissions from steel produced for automobiles in Mexico," Applied Energy, Elsevier, vol. 174(C), pages 245-255.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.