IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v25y2000i6p577-585.html
   My bibliography  Save this item

Truncation error in embodied energy analyses of basic iron and steel products

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Costa, Márcio Macedo & Schaeffer, Roberto & Worrell, Ernst, 2001. "Exergy accounting of energy and materials flows in steel production systems," Energy, Elsevier, vol. 26(4), pages 363-384.
  2. Huang, Yu-Fong & Gan, Xing-Jia & Chiueh, Pei-Te, 2017. "Life cycle assessment and net energy analysis of offshore wind power systems," Renewable Energy, Elsevier, vol. 102(PA), pages 98-106.
  3. Hannah Sharp & Josefine Grundius & Jukka Heinonen, 2016. "Carbon Footprint of Inbound Tourism to Iceland: A Consumption-Based Life-Cycle Assessment including Direct and Indirect Emissions," Sustainability, MDPI, vol. 8(11), pages 1-23, November.
  4. Zhang, L.X. & Wang, C.B. & Bahaj, A.S., 2014. "Carbon emissions by rural energy in China," Renewable Energy, Elsevier, vol. 66(C), pages 641-649.
  5. Kessides, Ioannis N. & Wade, David C., 2011. "Towards a sustainable global energy supply infrastructure: Net energy balance and density considerations," Energy Policy, Elsevier, vol. 39(9), pages 5322-5334, September.
  6. Xiaopeng Wang & Xiang Chen & Yiman Cheng & Luyao Zhou & Yi Li & Yongliang Yang, 2020. "Factorial Decomposition of the Energy Footprint of the Shaoxing Textile Industry," Energies, MDPI, vol. 13(7), pages 1-13, April.
  7. Fix, Blair, 2019. "Human Activity, Energy & Money in the United States: Connecting the Biophysical Economy with its Pecuniary Image," Thesis Commons e74ng, Center for Open Science.
  8. Filimonau, Viachaslau & Dickinson, Janet & Robbins, Derek & Reddy, Maharaj Vijay, 2013. "The role of ‘indirect’ greenhouse gas emissions in tourism: Assessing the hidden carbon impacts from a holiday package tour," Transportation Research Part A: Policy and Practice, Elsevier, vol. 54(C), pages 78-91.
  9. Patterson, Murray & McDonald, Garry & Hardy, Derrylea, 2017. "Is there more in common than we think? Convergence of ecological footprinting, emergy analysis, life cycle assessment and other methods of environmental accounting," Ecological Modelling, Elsevier, vol. 362(C), pages 19-36.
  10. Ibn-Mohammed, T. & Koh, S.C.L. & Reaney, I.M. & Acquaye, A. & Schileo, G. & Mustapha, K.B. & Greenough, R., 2017. "Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1321-1344.
  11. Lenzen, Manfred & Wachsmann, Ulrike, 2004. "Wind turbines in Brazil and Germany: an example of geographical variability in life-cycle assessment," Applied Energy, Elsevier, vol. 77(2), pages 119-130, February.
  12. Ozoemena, Matthew & Hasan, Reaz & Cheung, Wai Ming, 2016. "Analysis of technology improvement opportunities for a 1.5 MW wind turbine using a hybrid stochastic approach in life cycle assessment," Renewable Energy, Elsevier, vol. 93(C), pages 369-382.
  13. Lenzen, M. & Treloar, G., 2002. "Embodied energy in buildings: wood versus concrete--reply to Borjesson and Gustavsson," Energy Policy, Elsevier, vol. 30(3), pages 249-255, February.
  14. Eleanor Eaton & Alistair Hunt & Anastasia Di Leo & Daniel Black & Gwen Frost & Sarah Hargreaves, 2022. "What Are the Environmental Benefits and Costs of Reducing Food Waste? Bristol as a Case Study in the WASTE FEW Urban Living Lab Project," Sustainability, MDPI, vol. 14(9), pages 1-22, May.
  15. Foran, Barney & Lenzen, Manfred & Dey, Christopher & Bilek, Marcela, 2005. "Integrating sustainable chain management with triple bottom line accounting," Ecological Economics, Elsevier, vol. 52(2), pages 143-157, January.
  16. Hauke Ward & Leonie Wenz & Jan C. Steckel & Jan C. Minx, 2018. "Truncation Error Estimates in Process Life Cycle Assessment Using Input‐Output Analysis," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1080-1091, October.
  17. Fix, Blair, 2013. "Human Activity, Energy & Money in the Unlted States: Connecting the Biophysical Economy with its Pecuniary Image," EconStor Theses, ZBW - Leibniz Information Centre for Economics, number 203120.
  18. Maxime Agez & Guillaume Majeau‐Bettez & Manuele Margni & Anders H. Strømman & Réjean Samson, 2020. "Lifting the veil on the correction of double counting incidents in hybrid life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 517-533, June.
  19. Lenzen, Manfred & Munksgaard, Jesper, 2002. "Energy and CO2 life-cycle analyses of wind turbines—review and applications," Renewable Energy, Elsevier, vol. 26(3), pages 339-362.
  20. Rauf, Abdul & Crawford, Robert H., 2015. "Building service life and its effect on the life cycle embodied energy of buildings," Energy, Elsevier, vol. 79(C), pages 140-148.
  21. FæHn, Taran & Jacobsen, Karl & Bye, Brita, 2011. "Diffusion of Climate Technologies in Presence of an Emissions Cap," Conference papers 332131, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  22. Buus, Tomáš, 2017. "Energy efficiency and energy prices: A general mathematical framework," Energy, Elsevier, vol. 139(C), pages 743-754.
  23. Shi, Jianglan & Li, Huajiao & Guan, Jianhe & Sun, Xiaoqi & Guan, Qing & Liu, Xiaojia, 2017. "Evolutionary features of global embodied energy flow between sectors: A complex network approach," Energy, Elsevier, vol. 140(P1), pages 395-405.
  24. Jesper Munksgaard & Manfred Lenzen & Thomas C. Jensen & Lise-Lotte Pade, 2005. "Transport Energy Embodied in Consumer Goods: A Hybrid Life-Cycle Analysis," Energy & Environment, , vol. 16(1), pages 27-45, January.
  25. Savino, Matteo M. & Manzini, Riccardo & Della Selva, Vincenzo & Accorsi, Riccardo, 2017. "A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines," Applied Energy, Elsevier, vol. 189(C), pages 739-752.
  26. Trainer, Ted, 2014. "The limits to solar thermal electricity," Energy Policy, Elsevier, vol. 73(C), pages 57-64.
  27. Limmeechokchai, Bundit & Suksuntornsiri, Pawinee, 2007. "Embedded energy and total greenhouse gas emissions in final consumptions within Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 259-281, February.
  28. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
  29. Tian, Xu & Chen, Bin & Geng, Yong & Zhong, Shaozhuo & Gao, Cuixia & Wilson, Jeffrey & Cui, Xiaowei & Dou, Yi, 2019. "Energy footprint pathways of China," Energy, Elsevier, vol. 180(C), pages 330-340.
  30. Acquaye, Adolf & Duffy, Aidan & Basu, Biswajit, 2011. "Embodied emissions abatement--A policy assessment using stochastic analysis," Energy Policy, Elsevier, vol. 39(1), pages 429-441, January.
  31. Genovese, Andrea & Acquaye, Adolf A. & Figueroa, Alejandro & Koh, S.C. Lenny, 2017. "Sustainable supply chain management and the transition towards a circular economy: Evidence and some applications," Omega, Elsevier, vol. 66(PB), pages 344-357.
  32. Bernhard Steubing & Arjan de Koning & Stefano Merciai & Arnold Tukker, 2022. "How do carbon footprints from LCA and EEIOA databases compare? A comparison of ecoinvent and EXIOBASE," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1406-1422, August.
  33. Xueting Zhao, 2015. "LCA Methodologies an Annotated Bibliography," Working Papers Resource Document 2015-03, Regional Research Institute, West Virginia University.
  34. Bruckner, Martin & Fischer, Günther & Tramberend, Sylvia & Giljum, Stefan, 2015. "Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods," Ecological Economics, Elsevier, vol. 114(C), pages 11-21.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.