My bibliography
Save this item
Cost dynamics of wind power
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ibenholt, Karin, 2002. "Explaining learning curves for wind power," Energy Policy, Elsevier, vol. 30(13), pages 1181-1189, October.
- Lehmann, Paul, 2013. "Supplementing an emissions tax by a feed-in tariff for renewable electricity to address learning spillovers," Energy Policy, Elsevier, vol. 61(C), pages 635-641.
- Kypreos, Socrates, 2005. "Modeling experience curves in MERGE (model for evaluating regional and global effects)," Energy, Elsevier, vol. 30(14), pages 2721-2737.
- Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
- van Sark, W.G.J.H.M. & Alsema, E.A., 2010. "Potential errors when fitting experience curves by means of spreadsheet software," Energy Policy, Elsevier, vol. 38(11), pages 7508-7511, November.
- Kahouli, Sondès, 2011. "Effects of technological learning and uranium price on nuclear cost: Preliminary insights from a multiple factors learning curve and uranium market modeling," Energy Economics, Elsevier, vol. 33(5), pages 840-852, September.
- Irfan Sami & Shafaat Ullah & Zahoor Ali & Nasim Ullah & Jong-Suk Ro, 2020. "A Super Twisting Fractional Order Terminal Sliding Mode Control for DFIG-Based Wind Energy Conversion System," Energies, MDPI, vol. 13(9), pages 1-20, May.
- Reichenbach, Johanna & Requate, Till, 2012.
"Subsidies for renewable energies in the presence of learning effects and market power,"
Resource and Energy Economics, Elsevier, vol. 34(2), pages 236-254.
- Reichenbach, Johanna & Requate, Till, 2011. "Subsidies for renewable energies in the presence of learning effects and market power," Kiel Working Papers 1689, Kiel Institute for the World Economy (IfW Kiel).
- Cong, Rong-Gang, 2013. "An optimization model for renewable energy generation and its application in China: A perspective of maximum utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 94-103.
- Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
- Ijjou Tizgui & Fatima El Guezar & Hassane Bouzahir & Alessandro N. Vargas, 2018. "Estimation and Analysis of Wind Electricity Production Cost in Morocco," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 58-66.
- Tadeusz Skoczkowski & Sławomir Bielecki & Joanna Wojtyńska, 2019. "Long-Term Projection of Renewable Energy Technology Diffusion," Energies, MDPI, vol. 12(22), pages 1-24, November.
- Yu, Yang & Li, Hong & Che, Yuyuan & Zheng, Qiongjie, 2017. "The price evolution of wind turbines in China: A study based on the modified multi-factor learning curve," Renewable Energy, Elsevier, vol. 103(C), pages 522-536.
- Karali, Nihan & Park, Won Young & McNeil, Michael, 2017. "Modeling technological change and its impact on energy savings in the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 202(C), pages 447-458.
- Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
- Wagner Sousa de Oliveira & Antonio Jorge Fernandes, 2012. "Optimization Model for Economic Evaluation of Wind Farms - How to Optimize a Wind Energy Project Economically and Technically," International Journal of Energy Economics and Policy, Econjournals, vol. 2(1), pages 10-20.
- Kamp, Linda M. & Smits, Ruud E. H. M. & Andriesse, Cornelis D., 2004. "Notions on learning applied to wind turbine development in the Netherlands and Denmark," Energy Policy, Elsevier, vol. 32(14), pages 1625-1637, September.
- Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
- Yan Xu & Jiahai Yuan & Jianxiu Wang, 2017. "Learning of Power Technologies in China: Staged Dynamic Two-Factor Modeling and Empirical Evidence," Sustainability, MDPI, vol. 9(5), pages 1-14, May.
- Chinmoy, Lakshmi & Iniyan, S. & Goic, Ranko, 2019. "Modeling wind power investments, policies and social benefits for deregulated electricity market – A review," Applied Energy, Elsevier, vol. 242(C), pages 364-377.
- Williams, Eric & Hittinger, Eric & Carvalho, Rexon & Williams, Ryan, 2017. "Wind power costs expected to decrease due to technological progress," Energy Policy, Elsevier, vol. 106(C), pages 427-435.
- Clas‐Otto Wene, 2016. "Future energy system development depends on past learning opportunities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(1), pages 16-32, January.
- Wüstemeyer, Christoph & Bunn, Derek & Madlener, Reinhard, 2012. "Bridging the Gap between Onshore and Offshore Innovations by the European Wind Power Supply Industry: A Survey-based Analysis," FCN Working Papers 19/2012, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Kumbaroglu, Gürkan & Karali, Nihan & ArIkan, YIldIz, 2008. "CO2, GDP and RET: An aggregate economic equilibrium analysis for Turkey," Energy Policy, Elsevier, vol. 36(7), pages 2694-2708, July.
- Söderholm, Patrik & Ek, Kristina & Pettersson, Maria, 2007. "Wind power development in Sweden: Global policies and local obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 365-400, April.
- Harborne, Paul & Hendry, Chris, 2009. "Pathways to commercial wind power in the US, Europe and Japan: The role of demonstration projects and field trials in the innovation process," Energy Policy, Elsevier, vol. 37(9), pages 3580-3595, September.
- Lancker, Kira & Quaas, Martin F., 2019.
"Increasing marginal costs and the efficiency of differentiated feed-in tariffs,"
Energy Economics, Elsevier, vol. 83(C), pages 104-118.
- Lancker, Kira & Quaas, Martin, 2019. "Increasing marginal costs and the efficiency of differentiated feed-in tariffs," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203641, Verein für Socialpolitik / German Economic Association.
- Kahouli-Brahmi, Sondes, 2009. "Testing for the presence of some features of increasing returns to adoption factors in energy system dynamics: An analysis via the learning curve approach," Ecological Economics, Elsevier, vol. 68(4), pages 1195-1212, February.
- Bläsi, Albrecht & Requate, Till, 2007. "Subsidies for Wind Power: Surfing down the Learning Curve?," Economics Working Papers 2007-28, Christian-Albrechts-University of Kiel, Department of Economics.
- Cong, Rong-Gang & Shen, Shaochuan, 2014. "How to Develop Renewable Power in China? A Cost-Effective Perspective," MPRA Paper 112209, University Library of Munich, Germany.
- Kypreos, Socrates, 2007. "A MERGE model with endogenous technological change and the cost of carbon stabilization," Energy Policy, Elsevier, vol. 35(11), pages 5327-5336, November.
- Richard G. Newell, 2011. "The Energy Innovation System: A Historical Perspective," NBER Chapters, in: Accelerating Energy Innovation: Insights from Multiple Sectors, pages 25-47, National Bureau of Economic Research, Inc.
- Weisser, Daniel, 2004. "Costing electricity supply scenarios: A case study of promoting renewable energy technologies on Rodriguez, Mauritius," Renewable Energy, Elsevier, vol. 29(8), pages 1319-1347.
- Hoevenaars, Eric J. & Crawford, Curran A., 2012. "Implications of temporal resolution for modeling renewables-based power systems," Renewable Energy, Elsevier, vol. 41(C), pages 285-293.
- Barreto, Leonardo & Kypreos, Socrates, 2004. "Emissions trading and technology deployment in an energy-systems "bottom-up" model with technology learning," European Journal of Operational Research, Elsevier, vol. 158(1), pages 243-261, October.
- Chade Ricosti, Juliana F. & Sauer, Ildo L., 2013. "An assessment of wind power prospects in the Brazilian hydrothermal system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 742-753.
- Li, Jun, 2010. "Decarbonising power generation in China--Is the answer blowing in the wind?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1154-1171, May.
- Celik, A.N., 2003. "A simplified model for estimating the monthly performance of autonomous wind energy systems with battery storage," Renewable Energy, Elsevier, vol. 28(4), pages 561-572.
- Nakata, Toshihiko & Sato, Takemi & Wang, Hao & Kusunoki, Tomoya & Furubayashi, Takaaki, 2011. "Modeling technological learning and its application for clean coal technologies in Japan," Applied Energy, Elsevier, vol. 88(1), pages 330-336, January.
- Lehmann, Paul, 2009.
"Climate Policies with Pollution Externalities and Learning Spillovers,"
MPRA Paper
21353, University Library of Munich, Germany.
- Lehmann, Paul, 2009. "Climate policies with pollution externalities and learning spillovers," UFZ Discussion Papers 10/2009, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
- Dalton, G.J. & Alcorn, R. & Lewis, T., 2012. "A 10 year installation program for wave energy in Ireland: A case study sensitivity analysis on financial returns," Renewable Energy, Elsevier, vol. 40(1), pages 80-89.
- Papineau, Maya, 2006. "An economic perspective on experience curves and dynamic economies in renewable energy technologies," Energy Policy, Elsevier, vol. 34(4), pages 422-432, March.
- Gosens, Jorrit & Hedenus, Fredrik & Sandén, Björn A., 2017. "Faster market growth of wind and PV in late adopters due to global experience build-up," Energy, Elsevier, vol. 131(C), pages 267-278.
- Zhao, Yuan & Hao, Li-Sha & Wang, Yu-Ping, 2009. "Development strategies for wind power industry in Jiangsu Province, China: Based on the evaluation of resource capacity," Energy Policy, Elsevier, vol. 37(5), pages 1736-1744, May.
- Neuhoff, K. & Sellers, R., 2006. "Mainstreaming New Renewable Energy Technologies," Cambridge Working Papers in Economics 0624, Faculty of Economics, University of Cambridge.
- Kobos, Peter H. & Erickson, Jon D. & Drennen, Thomas E., 2006. "Technological learning and renewable energy costs: implications for US renewable energy policy," Energy Policy, Elsevier, vol. 34(13), pages 1645-1658, September.
- Greenblatt, Jeffery B. & Succar, Samir & Denkenberger, David C. & Williams, Robert H. & Socolow, Robert H., 2007. "Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation," Energy Policy, Elsevier, vol. 35(3), pages 1474-1492, March.
- Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
- Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
- Grafström, Jonas & Lindman, Åsa, 2017. "Invention, innovation and diffusion in the European wind power sector," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 179-191.
- Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
- Celik, A.N., 2006. "A simplified model for estimating yearly wind fraction in hybrid-wind energy systems," Renewable Energy, Elsevier, vol. 31(1), pages 105-118.
- Kumbaroglu, Gürkan & Madlener, Reinhard & Demirel, Mustafa, 2008.
"A real options evaluation model for the diffusion prospects of new renewable power generation technologies,"
Energy Economics, Elsevier, vol. 30(4), pages 1882-1908, July.
- Gürkan Kumbaroglu & Reinhard Madlener & Mustafa Demirel, 2004. "A Real Options Evaluation Model for the Diffusion Prospects of New Renewable Power Generation Technologies," CEPE Working paper series 04-35, CEPE Center for Energy Policy and Economics, ETH Zurich.
- Linda M. Kamp, 2012. "The Role of Policy in Inverse Developments: Comparing Dutch and Danish Wind Energy," Chapters, in: Tineke M. Egyedi & Donna C. Mehos (ed.), Inverse Infrastructures, chapter 7, Edward Elgar Publishing.
- Azar, Christian & Lindgren, Kristian & Andersson, Bjorn A., 2003. "Global energy scenarios meeting stringent CO2 constraints--cost-effective fuel choices in the transportation sector," Energy Policy, Elsevier, vol. 31(10), pages 961-976, August.
- Hoogwijk, Monique & de Vries, Bert & Turkenburg, Wim, 2004. "Assessment of the global and regional geographical, technical and economic potential of onshore wind energy," Energy Economics, Elsevier, vol. 26(5), pages 889-919, September.
- Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
- Mondal, Md. Alam Hossain & Denich, Manfred, 2010. "Assessment of renewable energy resources potential for electricity generation in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2401-2413, October.
- Allan, Grant & Gilmartin, Michelle & McGregor, Peter & Swales, Kim, 2011. "Levelised costs of Wave and Tidal energy in the UK: Cost competitiveness and the importance of "banded" Renewables Obligation Certificates," Energy Policy, Elsevier, vol. 39(1), pages 23-39, January.
- Dinica, Valentina, 2011. "Renewable electricity production costs--A framework to assist policy-makers' decisions on price support," Energy Policy, Elsevier, vol. 39(7), pages 4153-4167, July.
- Ngala, G.M. & Alkali, B. & Aji, M.A., 2007. "Viability of wind energy as a power generation source in Maiduguri, Borno state, Nigeria," Renewable Energy, Elsevier, vol. 32(13), pages 2242-2246.
- Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
- Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
- Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
- Söderholm, Patrik & Sundqvist, Thomas, 2007. "Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies," Renewable Energy, Elsevier, vol. 32(15), pages 2559-2578.
- Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
- Lee, Shun-Chung & Shih, Li-Hsing, 2010. "Renewable energy policy evaluation using real option model -- The case of Taiwan," Energy Economics, Elsevier, vol. 32(Supplemen), pages 67-78, September.