Mainstreaming New Renewable Energy Technologies
Author
Abstract
Suggested Citation
Note: IO
Download full text from publisher
References listed on IDEAS
- Timothy F. Bresnahan & Shane Greenstein, 1999.
"Technological Competition and the Structure of the Computer Industry,"
Journal of Industrial Economics, Wiley Blackwell, vol. 47(1), pages 1-40, March.
- Timothy F. Bresnahan & Shane Greenstein, 1997. "Technological Competition and the Structure of the Computer Industry," Working Papers 97028, Stanford University, Department of Economics.
- Dale W. Jorgenson & Peter J. Wilcoxen, 1990. "Environmental Regulation and U.S. Economic Growth," RAND Journal of Economics, The RAND Corporation, vol. 21(2), pages 314-340, Summer.
- Neij, L, 1999. "Cost dynamics of wind power," Energy, Elsevier, vol. 24(5), pages 375-389.
- Anderson, Dennis & Bird, Catherine D, 1992. "Carbon Accumulations and Technical Progress--A Simulation Study of Costs," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(1), pages 1-29, February.
- Margolis, Robert M. & Kammen, Daniel M., 1999. "Evidence of under-investment in energy R&D in the United States and the impact of Federal policy," Energy Policy, Elsevier, vol. 27(10), pages 575-584, October.
- Karsten Neuhoff, 2005.
"Large-Scale Deployment of Renewables for Electricity Generation,"
Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 21(1), pages 88-110, Spring.
- Neuhoff, K., 2004. "Large Scale Deployment of Renewables for Electricity Generation," Cambridge Working Papers in Economics 0460, Faculty of Economics, University of Cambridge.
- Painuly, J.P, 2001. "Barriers to renewable energy penetration; a framework for analysis," Renewable Energy, Elsevier, vol. 24(1), pages 73-89.
- Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Stenzel, Till & Frenzel, Alexander, 2008. "Regulating technological change--The strategic reactions of utility companies towards subsidy policies in the German, Spanish and UK electricity markets," Energy Policy, Elsevier, vol. 36(7), pages 2645-2657, July.
- Karsten Neuhoff, 2009.
"Implementing the EU Renewables Directive,"
Working Papers
EPRG 0908, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Neuhoff, K., 2009. "Implementing the EU Renewables Directive," Cambridge Working Papers in Economics 0913, Faculty of Economics, University of Cambridge.
- Sirin, Selahattin Murat & Erdogan, Fakir H., 2013. "R&D expenditures in liberalized electricity markets: The case of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 491-498.
- Sirin, Selahattin Murat, 2011. "Energy market reforms in Turkey and their impact on innovation and R&D expenditures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4579-4585.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wei Jin & ZhongXiang Zhang, 2017. "The tragedy of product homogeneity and knowledge non-spillovers: explaining the slow pace of energy technological progress," Annals of Operations Research, Springer, vol. 255(1), pages 639-661, August.
- Lehmann, Paul & Gawel, Erik, 2013.
"Why should support schemes for renewable electricity complement the EU emissions trading scheme?,"
Energy Policy, Elsevier, vol. 52(C), pages 597-607.
- Lehmann, Paul & Gawel, Erik, 2011. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," UFZ Discussion Papers 5/2011, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
- Jin, Wei & Zhang, ZhongXiang, 2014.
"Explaining the Slow Pace of Energy Technological Innovation Why Market Conditions Matter?,"
Energy: Resources and Markets
165758, Fondazione Eni Enrico Mattei (FEEM).
- Wei Jin & ZhongXiang Zhang, 2014. "Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter," CCEP Working Papers 1401, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
- Jin, Wei & Zhang, ZhongXiang, 2014. "Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter," Working Papers 249420, Australian National University, Centre for Climate Economics & Policy.
- Wei Jin & ZhongXiang Zhang, 2014. "Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter?," Working Papers 2014.18, Fondazione Eni Enrico Mattei.
- Jin, Wei & Zhang, ZhongXiang, "undated".
"Product Homogeneity, Knowledge Spillovers, and Innovation: Why Energy Sector is Perplexed by a Slow Pace of Technological Progress,"
Working Papers
249504, Australian National University, Centre for Climate Economics & Policy.
- Wei Jin & ZhongXiang Zhang, 2015. "Product Homogeneity, Knowledge Spillovers, and Innovation: Why Energy Sector is Perplexed by a Slow Pace of Technological Progress," CCEP Working Papers 1501, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
- Lehmann, Paul, 2013. "Supplementing an emissions tax by a feed-in tariff for renewable electricity to address learning spillovers," Energy Policy, Elsevier, vol. 61(C), pages 635-641.
- Rasmussen, Tobias N., 2001. "CO2 abatement policy with learning-by-doing in renewable energy," Resource and Energy Economics, Elsevier, vol. 23(4), pages 297-325, October.
- John Foster & Liam Wagner, 2014. "International experience with transformations in electricity markets: A Short Literature Review," Energy Economics and Management Group Working Papers 2-2014, School of Economics, University of Queensland, Australia.
- Zhou, Dequn & Wu, Changsong & Wang, Qunwei & Zha, Donglan, 2019. "Response of scale and leverage of thermal power enterprises to renewable power enterprises in China," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014.
"Knowledge spillovers from clean and dirty technologies,"
LSE Research Online Documents on Economics
60501, London School of Economics and Political Science, LSE Library.
- Antoine Dechezlepretre, Ralf Martin, Myra Mohnen, 2017. "Knowledge Spillovers from clean and dirty technologies," GRI Working Papers 135, Grantham Research Institute on Climate Change and the Environment.
- Antoine Dechezleprêtre & Ralf Martin & Myra Mohnen, 2014. "Knowledge Spillovers from Clean and Dirty Technologies," CEP Discussion Papers dp1300, Centre for Economic Performance, LSE.
- Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
- Cong, Rong-Gang & Shen, Shaochuan, 2014. "How to Develop Renewable Power in China? A Cost-Effective Perspective," MPRA Paper 112209, University Library of Munich, Germany.
- Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008.
"Modeling endogenous technological change for climate policy analysis,"
Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
- Gillingham, Kenneth T. & Newell, Richard G. & Pizer, William A., 2007. "Modeling Endogenous Technological Change for Climate Policy Analysis," RFF Working Paper Series dp-07-14, Resources for the Future.
- Gerlagh, Reyer & van der Zwaan, Bob, 2003. "Gross world product and consumption in a global warming model with endogenous technological change," Resource and Energy Economics, Elsevier, vol. 25(1), pages 35-57, February.
- Kobos, Peter H. & Erickson, Jon D. & Drennen, Thomas E., 2006. "Technological learning and renewable energy costs: implications for US renewable energy policy," Energy Policy, Elsevier, vol. 34(13), pages 1645-1658, September.
- Wiesenthal, Tobias & Leduc, Guillaume & Haegeman, Karel & Schwarz, Hans-Günther, 2012. "Bottom-up estimation of industrial and public R&D investment by technology in support of policy-making: The case of selected low-carbon energy technologies," Research Policy, Elsevier, vol. 41(1), pages 116-131.
- Marzio Galeotti & Carlo Carraro, 2004. "Does Endogenous Technical Change Make a Difference in Climate Policy Analysis? A Robustness Exercise with the FEEM-RICE Model," Working Papers 2004.152, Fondazione Eni Enrico Mattei.
- Munoz, L.A. Hurtado & Huijben, J.C.C.M. & Verhees, B. & Verbong, G.P.J., 2014. "The power of grid parity: A discursive approach," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 179-190.
- Wang, Zhaohua & Yang, Zhongmin & Zhang, Yixiang & Yin, Jianhua, 2012.
"Energy technology patents–CO2 emissions nexus: An empirical analysis from China,"
Energy Policy, Elsevier, vol. 42(C), pages 248-260.
- Zhaohua Wang & Yixiang Zhang & Xian Zhang, 2011. "Energy technology patents-CO2 emissions nexus: An empirical analysis from China," CEEP-BIT Working Papers 21, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- van Zon, Adriaan & Yetkiner, I. Hakan, 2003. "An endogenous growth model with embodied energy-saving technical change," Resource and Energy Economics, Elsevier, vol. 25(1), pages 81-103, February.
- Md Samsul Alam & Nicholas Apergis & Sudharshan Reddy Paramati & Jianchun Fang, 2021. "The impacts of R&D investment and stock markets on clean‐energy consumption and CO2 emissions in OECD economies," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 4979-4992, October.
More about this item
Keywords
Energy technology; Research and development; Deployment;All these keywords.
JEL classification:
- Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
- L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
- D92 - Microeconomics - - Micro-Based Behavioral Economics - - - Intertemporal Firm Choice, Investment, Capacity, and Financing
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ENE-2006-03-05 (Energy Economics)
- NEP-INO-2006-03-05 (Innovation)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:0624. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.