IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v23y1998i5p355-363.html
   My bibliography  Save this item

Exergy, waste accounting, and life-cycle analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ayres, Robert U. & Warr, Benjamin, 2005. "Accounting for growth: the role of physical work," Structural Change and Economic Dynamics, Elsevier, vol. 16(2), pages 181-209, June.
  2. Teles dos Santos, Moisés & Park, Song Won, 2013. "Sustainability and biophysics basis of technical and economic processes: A survey of the reconciliation by thermodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 261-271.
  3. Dai, Jing & Chen, Bin & Sciubba, Enrico, 2014. "Extended exergy based ecological accounting for the transportation sector in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 229-237.
  4. Dincer, Ibrahim & Rosen, Marc A., 2005. "Thermodynamic aspects of renewables and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 169-189, April.
  5. Robert U. Ayres & Jeroen C.J.M. van den Bergh, 2000. "The Role of Material/Energy Resources and Dematerialisation in Economic Growth Theories," Tinbergen Institute Discussion Papers 00-068/3, Tinbergen Institute.
  6. Dincer, Ibrahim, 2002. "The role of exergy in energy policy making," Energy Policy, Elsevier, vol. 30(2), pages 137-149, January.
  7. Talens, Laura & Villalba, Gara & Gabarrell, Xavier, 2007. "Exergy analysis applied to biodiesel production," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 397-407.
  8. Stern, David I., 2010. "The Role of Energy in Economic Growth," Working Papers 249380, Australian National University, Centre for Climate Economics & Policy.
  9. Ayres, Robert U. & van den Bergh, Jeroen C.J.M., 2005. "A theory of economic growth with material/energy resources and dematerialization: Interaction of three growth mechanisms," Ecological Economics, Elsevier, vol. 55(1), pages 96-118, October.
  10. Aldair Benavides Gamero & Josué Camargo Vanegas & Jorge Duarte Forero & Guillermo Valencia Ochoa & Rafael Diaz Herazo, 2023. "Advanced Exergo-Environmental Assessments of an Organic Rankine Cycle as Waste Heat Recovery System from a Natural Gas Engine," Energies, MDPI, vol. 16(7), pages 1-29, March.
  11. Sciubba, Enrico, 2003. "Extended exergy accounting applied to energy recovery from waste: The concept of total recycling," Energy, Elsevier, vol. 28(13), pages 1315-1334.
  12. Longden, David & Brammer, John & Bastin, Lucy & Cooper, Nic, 2007. "Distributed or centralised energy-from-waste policy? Implications of technology and scale at municipal level," Energy Policy, Elsevier, vol. 35(4), pages 2622-2634, April.
  13. Jamali-Zghal, N. & Lacarrière, B. & Le Corre, O., 2015. "Metallurgical recycling processes: Sustainability ratios and environmental performance assessment," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 66-75.
  14. Guevara, Zeus & Domingos, Tiago, 2017. "Three-level decoupling of energy use in Portugal 1995–2010," Energy Policy, Elsevier, vol. 108(C), pages 134-142.
  15. Seckin, C. & Sciubba, E. & Bayulken, A.R., 2012. "An application of the extended exergy accounting method to the Turkish society, year 2006," Energy, Elsevier, vol. 40(1), pages 151-163.
  16. Rosen, Marc A. & Dincer, Ibrahim & Kanoglu, Mehmet, 2008. "Role of exergy in increasing efficiency and sustainability and reducing environmental impact," Energy Policy, Elsevier, vol. 36(1), pages 128-137, January.
  17. Atılgan, Ramazan & Turan, Önder & Altuntaş, Önder & Aydın, Hakan & Synylo, Kateryna, 2013. "Environmental impact assessment of a turboprop engine with the aid of exergy," Energy, Elsevier, vol. 58(C), pages 664-671.
  18. Weißbach, D. & Ruprecht, G. & Huke, A. & Czerski, K. & Gottlieb, S. & Hussein, A., 2013. "Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants," Energy, Elsevier, vol. 52(C), pages 210-221.
  19. Dincer, I. & Hussain, M. M. & Al-Zaharnah, I., 2004. "Energy and exergy use in public and private sector of Saudi Arabia," Energy Policy, Elsevier, vol. 32(14), pages 1615-1624, September.
  20. Chen, B. & Chen, G.Q., 2007. "Modified ecological footprint accounting and analysis based on embodied exergy--a case study of the Chinese society 1981-2001," Ecological Economics, Elsevier, vol. 61(2-3), pages 355-376, March.
  21. Meyer, Lutz & Tsatsaronis, George & Buchgeister, Jens & Schebek, Liselotte, 2009. "Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems," Energy, Elsevier, vol. 34(1), pages 75-89.
  22. Ding, Yang & Liu, Chao & Zhang, Cheng & Xu, Xiaoxiao & Li, Qibin & Mao, Lianfei, 2018. "Exergoenvironmental model of Organic Rankine Cycle system including the manufacture and leakage of working fluid," Energy, Elsevier, vol. 145(C), pages 52-64.
  23. Asma Majeed & Syeda Adila Batool & Muhammad Nawaz Chaudhry, 2018. "Environmental Quantification of the Existing Waste Management System in a Developing World Municipality Using EaseTech: The Case of Bahawalpur, Pakistan," Sustainability, MDPI, vol. 10(7), pages 1-22, July.
  24. Enrico Sciubba, 2012. "A Thermodynamically Correct Treatment of Externalities with an Exergy-Based Numeraire," Sustainability, MDPI, vol. 4(5), pages 1-25, May.
  25. Attorre, F. & Sciubba, E. & Vitale, M., 2019. "A thermodynamic model for plant growth, validated with Pinus sylvestris data," Ecological Modelling, Elsevier, vol. 391(C), pages 53-62.
  26. Turan, Onder, 2015. "An exergy way to quantify sustainability metrics for a high bypass turbofan engine," Energy, Elsevier, vol. 86(C), pages 722-736.
  27. Ji, Xi & Chen, G.Q. & Chen, B. & Jiang, M.M., 2009. "Exergy-based assessment for waste gas emissions from Chinese transportation," Energy Policy, Elsevier, vol. 37(6), pages 2231-2240, June.
  28. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
  29. Aydın, Hakan & Turan, Önder & Karakoç, T. Hikmet & Midilli, Adnan, 2013. "Exergo-sustainability indicators of a turboprop aircraft for the phases of a flight," Energy, Elsevier, vol. 58(C), pages 550-560.
  30. Warr, Benjamin & Ayres, Robert, 2006. "REXS: A forecasting model for assessing the impact of natural resource consumption and technological change on economic growth," Structural Change and Economic Dynamics, Elsevier, vol. 17(3), pages 329-378, September.
  31. Rechberger, H. & Graedel, T. E., 2002. "The contemporary European copper cycle: statistical entropy analysis," Ecological Economics, Elsevier, vol. 42(1-2), pages 59-72, August.
  32. Zhang, Bo & Chen, G.Q. & Xia, X.H. & Li, S.C. & Chen, Z.M. & Ji, Xi, 2012. "Environmental emissions by Chinese industry: Exergy-based unifying assessment," Energy Policy, Elsevier, vol. 45(C), pages 490-501.
  33. Balocco, C. & Papeschi, S. & Grazzini, G. & Basosi, R., 2004. "Using exergy to analyze the sustainability of an urban area," Ecological Economics, Elsevier, vol. 48(2), pages 231-244, February.
  34. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
  35. Guido J. L. Micheli & Enrico Cagno & Elena Tappia, 2018. "Improving Eco-Efficiency through Waste Reduction beyond the Boundaries of a Firm: Evidence from a Multiplant Case in the Ceramic Industry," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
  36. Chen, G.Q. & Ji, Xi, 2007. "Chemical exergy based evaluation of water quality," Ecological Modelling, Elsevier, vol. 200(1), pages 259-268.
  37. Russo, Sofia & Verda, Vittorio, 2020. "Exergoeconomic analysis of a Mechanical Biological Treatment plant in an Integrated Solid Waste Management system including uncertainties," Energy, Elsevier, vol. 198(C).
  38. Shao, Ling & Wu, Zi & Chen, G.Q., 2013. "Exergy based ecological footprint accounting for China," Ecological Modelling, Elsevier, vol. 252(C), pages 83-96.
  39. Rosen, Marc A., 2002. "Assessing energy technologies and environmental impacts with the principles of thermodynamics," Applied Energy, Elsevier, vol. 72(1), pages 427-441, May.
  40. Chen, G.Q. & Chen, B., 2007. "Resource analysis of the Chinese society 1980-2002 based on exergy--Part 1: Fossil fuels and energy minerals," Energy Policy, Elsevier, vol. 35(4), pages 2038-2050, April.
  41. Maryam Ghodrat & Bijan Samali & Muhammad Akbar Rhamdhani & Geoffrey Brooks, 2019. "Thermodynamic-Based Exergy Analysis of Precious Metal Recovery out of Waste Printed Circuit Board through Black Copper Smelting Process," Energies, MDPI, vol. 12(7), pages 1-20, April.
  42. Rigby, Aidan & Lindley, Ben & Cullen, Jonathan, 2023. "An exergy based assessment of the efficiency of nuclear fuel cycles," Energy, Elsevier, vol. 264(C).
  43. Chen, B. & Chen, G.Q., 2006. "Exergy analysis for resource conversion of the Chinese Society 1993 under the material product system," Energy, Elsevier, vol. 31(8), pages 1115-1150.
  44. dos Santos, Rodrigo G. & de Faria, Pedro R. & Santos, José J.C.S. & da Silva, Julio A.M. & Flórez-Orrego, Daniel, 2016. "Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems," Energy, Elsevier, vol. 117(P2), pages 590-603.
  45. Bo Zhang & Suping Peng & Xiangyang Xu & Lijie Wang, 2011. "Embodiment Analysis for Greenhouse Gas Emissions by Chinese Economy Based on Global Thermodynamic Potentials," Energies, MDPI, vol. 4(11), pages 1-19, November.
  46. Mingjun Ma & Ziqiao Li & Kai Xue & Meng Liu, 2021. "Exergy-Based Life Cycle Assessment Model for Evaluating the Environmental Impact of Bridge: Principle and Case Study," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
  47. Becerra-Lopez, Humberto R. & Golding, Peter, 2007. "Dynamic exergy analysis for capacity expansion of regional power-generation systems: Case study of far West Texas," Energy, Elsevier, vol. 32(11), pages 2167-2186.
  48. Ayres, Robert U & Ayres, Leslie W & Warr, Benjamin, 2003. "Exergy, power and work in the US economy, 1900–1998," Energy, Elsevier, vol. 28(3), pages 219-273.
  49. Sofia Russo & Alicia Valero & Antonio Valero & Marta Iglesias-Émbil, 2021. "Exergy-Based Assessment of Polymers Production and Recycling: An Application to the Automotive Sector," Energies, MDPI, vol. 14(2), pages 1-19, January.
  50. Goran Finnveden & Yevgeniya Arushanyan & Miguel Brandão, 2016. "Exergy as a Measure of Resource Use in Life Cycle Assessment and Other Sustainability Assessment Tools," Resources, MDPI, vol. 5(3), pages 1-11, June.
  51. Yang, Kun & He, Yiyun & Du, Na & Yan, Ping & Zhu, Neng & Chen, Yuzhu & Wang, Jun & Lund, Peter D., 2024. "Exergy, exergoeconomic, and exergoenvironmental analyses of novel solar- and biomass-driven trigeneration system integrated with organic Rankine cycle," Energy, Elsevier, vol. 301(C).
  52. Kyrke Gaudreau & Roydon A. Fraser & Stephen Murphy, 2012. "The Characteristics of the Exergy Reference Environment and Its Implications for Sustainability-Based Decision-Making," Energies, MDPI, vol. 5(7), pages 1-17, July.
  53. Talens Peiró, L. & Lombardi, L. & Villalba Méndez, G. & Gabarrell i Durany, X., 2010. "Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO)," Energy, Elsevier, vol. 35(2), pages 889-893.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.