IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v20y1995i10p983-994.html
   My bibliography  Save this item

Computational analysis of an advanced adsorption-refrigeration cycle

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Aep Saepul Uyun & Takahiko Miyazaki & Yuki Ueda & Atsushi Akisawa, 2009. "High Performance Cascading Adsorption Refrigeration Cycle with Internal Heat Recovery Driven by a Low Grade Heat Source Temperature," Energies, MDPI, vol. 2(4), pages 1-22, November.
  2. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2016. "A review on low grade heat powered adsorption cooling systems for ice production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 109-120.
  3. Wang, D.C. & Li, Y.H. & Li, D. & Xia, Y.Z. & Zhang, J.P., 2010. "A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 344-353, January.
  4. Basdanis, Thanasis & Tsimpoukis, Alexandros & Valougeorgis, Dimitris, 2021. "Performance optimization of a solar adsorption chiller by dynamically adjusting the half-cycle time," Renewable Energy, Elsevier, vol. 164(C), pages 362-374.
  5. Xu, Jing & Huang, Meng & Liu, Zhiliang & Pan, Quanwen & Wang, Ruzhu & Ge, Tianshu, 2024. "Performance evaluation of a high-efficient hybrid adsorption refrigeration system for ultralow-grade heat utilization," Energy, Elsevier, vol. 288(C).
  6. Sharafian, Amir & Bahrami, Majid, 2015. "Critical analysis of thermodynamic cycle modeling of adsorption cooling systems for light-duty vehicle air conditioning applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 857-869.
  7. Khan, M.Z.I. & Alam, K.C.A. & Saha, B.B. & Akisawa, A. & Kashiwagi, T., 2008. "Performance evaluation of multi-stage, multi-bed adsorption chiller employing re-heat scheme," Renewable Energy, Elsevier, vol. 33(1), pages 88-98.
  8. Alam, K.C.A. & Kang, Y.T. & Saha, B.B. & Akisawa, A. & Kashiwagi, T., 2003. "A novel approach to determine optimum switching frequency of a conventional adsorption chiller," Energy, Elsevier, vol. 28(10), pages 1021-1037.
  9. Xu, Jing & Pan, Qaunwen & Zhang, Wei & Liu, Zhiliang & Wang, Ruzhu & Ge, Tianshu, 2022. "Design and experimental study on a hybrid adsorption refrigeration system using desiccant coated heat exchangers for efficient energy utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
  10. Al-Mousawi, Fadhel Noraldeen & Al-Dadah, Raya & Mahmoud, Saad, 2016. "Low grade heat driven adsorption system for cooling and power generation with small-scale radial inflow turbine," Applied Energy, Elsevier, vol. 183(C), pages 1302-1316.
  11. Yong, Li & Sumathy, K., 2002. "Review of mathematical investigation on the closed adsorption heat pump and cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 305-338, August.
  12. Santori, Giulio & Sapienza, Alessio & Freni, Angelo, 2012. "A dynamic multi-level model for adsorptive solar cooling," Renewable Energy, Elsevier, vol. 43(C), pages 301-312.
  13. Marlinda & Aep Saepul Uyun & Takahiko Miyazaki & Yuki Ueda & Atsushi Akisawa, 2010. "Performance Analysis of a Double-effect Adsorption Refrigeration Cycle with a Silica Gel/Water Working Pair," Energies, MDPI, vol. 3(11), pages 1-17, October.
  14. Lu, Z.S. & Wang, R.Z. & Xia, Z.Z. & Lu, X.R. & Yang, C.B. & Ma, Y.C. & Ma, G.B., 2013. "Study of a novel solar adsorption cooling system and a solar absorption cooling system with new CPC collectors," Renewable Energy, Elsevier, vol. 50(C), pages 299-306.
  15. Cot-Gores, Jaume & Castell, Albert & Cabeza, Luisa F., 2012. "Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5207-5224.
  16. Hassan, H.Z. & Mohamad, A.A. & Bennacer, R., 2011. "Simulation of an adsorption solar cooling system," Energy, Elsevier, vol. 36(1), pages 530-537.
  17. Pan, Q.W. & Xu, J. & Wang, R.Z. & Ge, T.S., 2022. "A new operation strategy based on unequal ad-/desorption time for a two-bed adsorption refrigeration system," Energy, Elsevier, vol. 259(C).
  18. Wang, L.W. & Wang, R.Z. & Oliveira, R.G., 2009. "A review on adsorption working pairs for refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 518-534, April.
  19. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2015. "A review on adsorption cooling systems with silica gel and carbon as adsorbents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 123-134.
  20. Jebasingh, V.K. & Herbert, G.M. Joselin, 2016. "A review of solar parabolic trough collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1085-1091.
  21. Khan, M.Z.I. & Saha, B.B. & Alam, K.C.A. & Akisawa, A. & Kashiwagi, T., 2007. "Study on solar/waste heat driven multi-bed adsorption chiller with mass recovery," Renewable Energy, Elsevier, vol. 32(3), pages 365-381.
  22. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K. & Sur, Anirban, 2017. "An overview of modelling techniques employed for performance simulation of low–grade heat operated adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 364-376.
  23. Fan, Wu & Chakraborty, Anutosh & Kayal, Sibnath, 2016. "Adsorption cooling cycles: Insights into carbon dioxide adsorption on activated carbons," Energy, Elsevier, vol. 102(C), pages 491-501.
  24. Hassan, H.Z. & Mohamad, A.A. & Al-Ansary, H.A. & Alyousef, Y.M., 2014. "Dynamic analysis of the CTAR (constant temperature adsorption refrigeration) cycle," Energy, Elsevier, vol. 77(C), pages 852-858.
  25. Almohammadi, K.M. & Harby, K., 2020. "Operational conditions optimization of a proposed solar-powered adsorption cooling system: Experimental, modeling, and optimization algorithm techniques," Energy, Elsevier, vol. 206(C).
  26. Abul Fazal Mohammad Mizanur Rahman & Yuki Ueda & Atsushi Akisawa & Takahiko Miyazaki & Bidyut Baran Saha, 2013. "Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle," Energies, MDPI, vol. 6(3), pages 1-20, March.
  27. Choudhury, Biplab & Saha, Bidyut Baran & Chatterjee, Pradip K. & Sarkar, Jyoti Prakas, 2013. "An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling," Applied Energy, Elsevier, vol. 104(C), pages 554-567.
  28. Li, Ang & Ismail, Azhar Bin & Thu, Kyaw & Ng, Kim Choon & Loh, Wai Soong, 2014. "Performance evaluation of a zeolite–water adsorption chiller with entropy analysis of thermodynamic insight," Applied Energy, Elsevier, vol. 130(C), pages 702-711.
  29. Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
  30. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.