IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v194y2020ics0360544219325885.html
   My bibliography  Save this item

An innovative waste-to-energy system integrated with a coal-fired power plant

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wu, Zhicong & Xu, Gang & Ge, Shiyu & Yang, Zhenjun & Xue, Xiaojun & Chen, Heng, 2024. "An efficient methanol pre-reforming gas turbine combined cycle with integration of mid-temperature energy upgradation and CO2 recovery: Thermodynamic and economic analysis," Applied Energy, Elsevier, vol. 358(C).
  2. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  3. Xing, Zhou & Ping, Zhou & Xiqiang, Zhao & Zhanlong, Song & Wenlong, Wang & Jing, Sun & Yanpeng, Mao, 2021. "Applicability of municipal solid waste incineration (MSWI) system integrated with pre-drying or torrefaction for flue gas waste heat recovery," Energy, Elsevier, vol. 224(C).
  4. Anufriev, I.S. & Kopyev, E.P. & Alekseenko, S.V. & Sharypov, O.V. & Vigriyanov, M.S., 2022. "New ecology safe waste-to-energy technology of liquid fuel combustion with superheated steam," Energy, Elsevier, vol. 250(C).
  5. Chen, Heng & Li, Jiarui & Li, Tongyu & Xu, Gang & Jin, Xi & Wang, Min & Liu, Tong, 2022. "Performance assessment of a novel medical-waste-to-energy design based on plasma gasification and integrated with a municipal solid waste incineration plant," Energy, Elsevier, vol. 245(C).
  6. Zhao, Xinyue & Chen, Heng & Li, Jinhang & Pan, Peiyuan & Gui, Fangxu & Xu, Gang, 2024. "Thermodynamic and economic analysis of a novel design for combined waste heat recovery of biogas power generation and silicon production," Energy, Elsevier, vol. 290(C).
  7. Chen, Heng & Wang, Yihan & An, Liuming & Xu, Gang & Zhu, Xin & Liu, Wenyi & Lei, Jing, 2022. "Performance evaluation of a novel design for the waste heat recovery of a cement plant incorporating a coal-fired power plant," Energy, Elsevier, vol. 246(C).
  8. Xue, Xiaojun & Lv, Jiayang & Chen, Heng & Xu, Gang & Li, Qiubai, 2022. "Thermodynamic and economic analyses of a new compressed air energy storage system incorporated with a waste-to-energy plant and a biogas power plant," Energy, Elsevier, vol. 261(PB).
  9. Kobayashi, Yasunori & Ismail, Tamer M. & Kobori, Takahiro & Ding, Lu & Yoshikawa, Kunio & Araki, Kuniomi & Kanazawa, Kiryu & Takahashi, Fumitake, 2021. "Experimental investigation on the effect of electron injection into air for thermal decomposition of solid waste," Applied Energy, Elsevier, vol. 295(C).
  10. Chen, Heng & Wang, Yihan & Li, Jiarui & Xu, Gang & Lei, Jing & Liu, Tong, 2022. "Thermodynamic analysis and economic assessment of an improved geothermal power system integrated with a biomass-fired cogeneration plant," Energy, Elsevier, vol. 240(C).
  11. Vilardi, Giorgio & Verdone, Nicola, 2022. "Exergy analysis of municipal solid waste incineration processes: The use of O2-enriched air and the oxy-combustion process," Energy, Elsevier, vol. 239(PB).
  12. Elisabetta Allevi & Maria Elena Giuli & Ruth Domínguez & Giorgia Oggioni, 2023. "Evaluating the role of waste-to-energy and cogeneration units in district heatings and electricity markets," Computational Management Science, Springer, vol. 20(1), pages 1-49, December.
  13. Zhu, Meng & Zhou, Jing & Chen, Lei & Su, Sheng & Hu, Song & Qing, Haoran & Li, Aishu & Wang, Yi & Zhong, Wenqi & Xiang, Jun, 2022. "Economic analysis and cost modeling of supercritical CO2 coal-fired boiler based on global optimization," Energy, Elsevier, vol. 239(PD).
  14. Wu, Zhicong & Zhang, Ziyue & Xu, Gang & Ge, Shiyu & Xue, Xiaojun & Chen, Heng, 2024. "Thermodynamic and economic analysis of a new methanol synthesis system coupled with a biomass integrated gasification combined cycle," Energy, Elsevier, vol. 300(C).
  15. Pan, Peiyuan & Peng, Weike & Li, Jiarui & Chen, Heng & Xu, Gang & Liu, Tong, 2022. "Design and evaluation of a conceptual waste-to-energy approach integrating plasma waste gasification with coal-fired power generation," Energy, Elsevier, vol. 238(PC).
  16. Peiyuan Pan & Meiyan Zhang & Gang Xu & Heng Chen & Xiaona Song & Tong Liu, 2020. "Thermodynamic and Economic Analyses of a New Waste-to-Energy System Incorporated with a Biomass-Fired Power Plant," Energies, MDPI, vol. 13(17), pages 1-20, August.
  17. Xue, Xiaojun & Li, Jiarui & Liu, Jun & Wu, Yunyun & Chen, Heng & Xu, Gang & Liu, Tong, 2022. "Performance evaluation of a conceptual compressed air energy storage system coupled with a biomass integrated gasification combined cycle," Energy, Elsevier, vol. 247(C).
  18. Farshchian, Ghazaleh & Darestani, Soroush Avakh & Hamidi, Naser, 2021. "Developing a decision-making dashboard for power losses attributes of Iran’s electricity distribution network," Energy, Elsevier, vol. 216(C).
  19. Raoul Voss & Roh Pin Lee & Magnus Fröhling, 2022. "Chemical Recycling of Plastic Waste: Comparative Evaluation of Environmental and Economic Performances of Gasification- and Incineration-based Treatment for Lightweight Packaging Waste," Circular Economy and Sustainability, Springer, vol. 2(4), pages 1369-1398, December.
  20. Khan, Muhammad Sajid & Huan, Qun & Yan, Mi & Ali, Mustajab & Noor, Obaid Ullah & Abid, Muhammad, 2022. "A novel configuration of solar integrated waste-to-energy incineration plant for multi-generational purpose: An effort for achieving maximum performance," Renewable Energy, Elsevier, vol. 194(C), pages 604-620.
  21. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.
  22. Maciej Dzikuć & Piotr Kuryło & Rafał Dudziak & Szymon Szufa & Maria Dzikuć & Karolina Godzisz, 2020. "Selected Aspects of Combustion Optimization of Coal in Power Plants," Energies, MDPI, vol. 13(9), pages 1-15, May.
  23. Aleksander Sobolewski & Tomasz Chmielniak & Joanna Bigda & Tomasz Billig & Rafał Fryza & Józef Popowicz, 2022. "Closing of Carbon Cycle by Waste Gasification for Circular Economy Implementation in Poland," Energies, MDPI, vol. 15(14), pages 1-23, July.
  24. Judit Oláh & Nemer Aburumman & József Popp & Muhammad Asif Khan & Hossam Haddad & Nicodemus Kitukutha, 2020. "Impact of Industry 4.0 on Environmental Sustainability," Sustainability, MDPI, vol. 12(11), pages 1-21, June.
  25. Dan Cudjoe, 2023. "Energy-economics and environmental prospects of integrated waste-to-energy projects in the Beijing-Tianjin-Hebei region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12597-12628, November.
  26. Wang, Yuting & Chen, Heng & Qiao, Shichao & Pan, Peiyuan & Xu, Gang & Dong, Yuehong & Jiang, Xue, 2023. "A novel methanol-electricity cogeneration system based on the integration of water electrolysis and plasma waste gasification," Energy, Elsevier, vol. 267(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.