IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v177y2019icp530-542.html
   My bibliography  Save this item

Toward efficient energy systems based on natural gas consumption prediction with LSTM Recurrent Neural Networks

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Li, Jingmiao & Wang, Jun, 2020. "Forcasting of energy futures market and synchronization based on stochastic gated recurrent unit model," Energy, Elsevier, vol. 213(C).
  2. Konstantinos Papageorgiou & Elpiniki I. Papageorgiou & Katarzyna Poczeta & Dionysis Bochtis & George Stamoulis, 2020. "Forecasting of Day-Ahead Natural Gas Consumption Demand in Greece Using Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 13(9), pages 1-32, May.
  3. Chen, Sai & Song, Yan & Ding, Yueting & Zhang, Ming & Nie, Rui, 2021. "Using long short-term memory model to study risk assessment and prediction of China’s oil import from the perspective of resilience theory," Energy, Elsevier, vol. 215(PB).
  4. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
  5. Qi, Chu & Zeng, Xianglong & Wang, Yongjian & Li, Hongguang, 2022. "Adaptive time window convolutional neural networks concerning multiple operation modes with applications in energy efficiency predictions," Energy, Elsevier, vol. 240(C).
  6. Fang, Yu & Jia, Chunhong & Wang, Xin & Min, Fan, 2024. "A fusion gas load prediction model with three-way residual error amendment," Energy, Elsevier, vol. 294(C).
  7. Ma, Tai-Yu & Faye, Sébastien, 2022. "Multistep electric vehicle charging station occupancy prediction using hybrid LSTM neural networks," Energy, Elsevier, vol. 244(PB).
  8. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
  9. Cui, Mianshan, 2022. "District heating load prediction algorithm based on bidirectional long short-term memory network model," Energy, Elsevier, vol. 254(PA).
  10. Guo, Zixi & Zhao, Jinzhou & You, Zhenjiang & Li, Yongming & Zhang, Shu & Chen, Yiyu, 2021. "Prediction of coalbed methane production based on deep learning," Energy, Elsevier, vol. 230(C).
  11. Xie, Yiwei & Hu, Pingfang & Peng, Donggen & Zhu, Na & Lei, Fei, 2023. "Development of a group control strategy based on multi-step load forecasting and its application in hybrid ground source heat pump," Energy, Elsevier, vol. 273(C).
  12. Rongheng Lin & Shuo Chen & Zheyu He & Budan Wu & Hua Zou & Xin Zhao & Qiushuang Li, 2024. "Electricity Behavior Modeling and Anomaly Detection Services Based on a Deep Variational Autoencoder Network," Energies, MDPI, vol. 17(16), pages 1-20, August.
  13. Yang, Qingqing & Li, Jianwei & Cao, Wanke & Li, Shuangqi & Lin, Jie & Huo, Da & He, Hongwen, 2020. "An improved vehicle to the grid method with battery longevity management in a microgrid application," Energy, Elsevier, vol. 198(C).
  14. Xie, Yiwei & Hu, Pingfang & Zhu, Na & Lei, Fei & Xing, Lu & Xu, Linghong & Sun, Qiming, 2020. "A hybrid short-term load forecasting model and its application in ground source heat pump with cooling storage system," Renewable Energy, Elsevier, vol. 161(C), pages 1244-1259.
  15. Ding, Jia & Zhao, Yuxuan & Jin, Junyang, 2023. "Forecasting natural gas consumption with multiple seasonal patterns," Applied Energy, Elsevier, vol. 337(C).
  16. Jiang, Wei & Wang, Xin & Zhang, Shu, 2023. "Integrating multi-modal data into AFSA-LSTM model for real-time oil production prediction," Energy, Elsevier, vol. 279(C).
  17. AL-Alimi, Dalal & AlRassas, Ayman Mutahar & Al-qaness, Mohammed A.A. & Cai, Zhihua & Aseeri, Ahmad O. & Abd Elaziz, Mohamed & Ewees, Ahmed A., 2023. "TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets," Applied Energy, Elsevier, vol. 343(C).
  18. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Prediction of fluctuation loads based on GARCH family-CatBoost-CNNLSTM," Energy, Elsevier, vol. 263(PE).
  19. Longfeng Zhang & Xin Ma & Hui Zhang & Gaoxun Zhang & Peng Zhang, 2022. "Multi-Step Ahead Natural Gas Consumption Forecasting Based on a Hybrid Model: Case Studies in The Netherlands and the United Kingdom," Energies, MDPI, vol. 15(19), pages 1-26, October.
  20. Zhongfei Li & Kai Gan & Shaolong Sun & Shouyang Wang, 2023. "A new PM2.5 concentration forecasting system based on AdaBoost‐ensemble system with deep learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 154-175, January.
  21. Su, Huai & Chi, Lixun & Zio, Enrico & Li, Zhenlin & Fan, Lin & Yang, Zhe & Liu, Zhe & Zhang, Jinjun, 2021. "An integrated, systematic data-driven supply-demand side management method for smart integrated energy systems," Energy, Elsevier, vol. 235(C).
  22. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
  23. Liu, Jinyuan & Wang, Shouxi & Wei, Nan & Qiao, Weibiao & Li, Ze & Zeng, Fanhua, 2023. "A clustering-based feature enhancement method for short-term natural gas consumption forecasting," Energy, Elsevier, vol. 278(PB).
  24. Maciej Slowik & Wieslaw Urban, 2022. "Machine Learning Short-Term Energy Consumption Forecasting for Microgrids in a Manufacturing Plant," Energies, MDPI, vol. 15(9), pages 1-16, May.
  25. Kumari, Pratima & Toshniwal, Durga, 2021. "Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting," Applied Energy, Elsevier, vol. 295(C).
  26. Zhang, Lihong & Wang, Jun & Wang, Bin, 2020. "Energy market prediction with novel long short-term memory network: Case study of energy futures index volatility," Energy, Elsevier, vol. 211(C).
  27. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
  28. Gong, Junhua & Shi, Guoyun & Wang, Shaobo & Wang, Peng & Chen, Bin & Chen, Yujie & Wang, Bohong & Yu, Bo & Jiang, Weixin & Li, Zongze, 2024. "Efficient super-resolution of pipeline transient process modeling using the Fourier Neural Operator," Energy, Elsevier, vol. 302(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.