IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v240y2022ics0360544221027559.html
   My bibliography  Save this article

Adaptive time window convolutional neural networks concerning multiple operation modes with applications in energy efficiency predictions

Author

Listed:
  • Qi, Chu
  • Zeng, Xianglong
  • Wang, Yongjian
  • Li, Hongguang

Abstract

Energy efficiency prediction models promote the efficient uses of energy and low consumptions of raw materials. The Convolutional neural network (CNN) is one of the most effective deep learning networks for complex process modeling. However, when applied to real industrial processes, the performance of the CNN would be restricted by the change of operating conditions, such as swings in feedstock qualities, different manufacturing strategies and variations in product specifications. A globally invariant model is unable to adapt the time-varying conditions. Therefore, we proposed a multiple operation modes adaptive time window convolutional neural network (MOM-ATWCNN). Here, a hierarchical clustering approach is suggested to determine the numbers and locations of the modes. Then, an optimal length of time window is selected to match with each mode accordingly. Lastly, the improved deep learning model is used to extract the varying features hidden in different modes. To verify the effectiveness, the proposed method is compared to several typical deep learning models by the data collected from a real industrial atmospheric and vacuum distillation process. The results show that the energy prediction accuracy of the MOM-ATWCNN is 6.5%, 2.9% and 10.2% higher than those of the traditional CNN, LSTM, BPNN, respectively. Furthermore, the proposed method exhibit its superiority regarding various performance indexes. The improvement of the algorithm is beneficial to the reduction of energy consumptions thus achieving economic goals.

Suggested Citation

  • Qi, Chu & Zeng, Xianglong & Wang, Yongjian & Li, Hongguang, 2022. "Adaptive time window convolutional neural networks concerning multiple operation modes with applications in energy efficiency predictions," Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221027559
    DOI: 10.1016/j.energy.2021.122506
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221027559
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nayyar Hussain Mirjat & Mohammad Aslam Uqaili & Khanji Harijan & Mohd Wazir Mustafa & Md. Mizanur Rahman & M. Waris Ali Khan, 2018. "Multi-Criteria Analysis of Electricity Generation Scenarios for Sustainable Energy Planning in Pakistan," Energies, MDPI, vol. 11(4), pages 1-33, March.
    2. Zhu, Xiaoxun & Liu, Ruizhang & Chen, Yao & Gao, Xiaoxia & Wang, Yu & Xu, Zixu, 2021. "Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN," Energy, Elsevier, vol. 236(C).
    3. Fan, Cheng & Wang, Jiayuan & Gang, Wenjie & Li, Shenghan, 2019. "Assessment of deep recurrent neural network-based strategies for short-term building energy predictions," Applied Energy, Elsevier, vol. 236(C), pages 700-710.
    4. Qu, Jiaqi & Qian, Zheng & Pei, Yan, 2021. "Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern," Energy, Elsevier, vol. 232(C).
    5. Laura J. Sonter & Marie C. Dade & James E. M. Watson & Rick K. Valenta, 2020. "Renewable energy production will exacerbate mining threats to biodiversity," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    6. Boukelia, T.E. & Arslan, O. & Mecibah, M.S., 2017. "Potential assessment of a parabolic trough solar thermal power plant considering hourly analysis: ANN-based approach," Renewable Energy, Elsevier, vol. 105(C), pages 324-333.
    7. Zhang, Jiaan & Liu, Dong & Li, Zhijun & Han, Xu & Liu, Hui & Dong, Cun & Wang, Junyan & Liu, Chenyu & Xia, Yunpeng, 2021. "Power prediction of a wind farm cluster based on spatiotemporal correlations," Applied Energy, Elsevier, vol. 302(C).
    8. Laib, Oussama & Khadir, Mohamed Tarek & Mihaylova, Lyudmila, 2019. "Toward efficient energy systems based on natural gas consumption prediction with LSTM Recurrent Neural Networks," Energy, Elsevier, vol. 177(C), pages 530-542.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    2. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    3. Xiaoxun, Zhu & Zixu, Xu & Yu, Wang & Xiaoxia, Gao & Xinyu, Hang & Hongkun, Lu & Ruizhang, Liu & Yao, Chen & Huaxin, Liu, 2023. "Research on wind speed behavior prediction method based on multi-feature and multi-scale integrated learning," Energy, Elsevier, vol. 263(PA).
    4. Li, Jingmiao & Wang, Jun, 2020. "Forcasting of energy futures market and synchronization based on stochastic gated recurrent unit model," Energy, Elsevier, vol. 213(C).
    5. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    6. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    7. Daina Paulikas & Steven Katona & Erika Ilves & Saleem H. Ali, 2022. "Deep‐sea nodules versus land ores: A comparative systems analysis of mining and processing wastes for battery‐metal supply chains," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2154-2177, December.
    8. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    10. Xiao, Zenan & Huang, Xiaoqiao & Liu, Jun & Li, Chengli & Tai, Yonghang, 2023. "A novel method based on time series ensemble model for hourly photovoltaic power prediction," Energy, Elsevier, vol. 276(C).
    11. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    12. Hyunsoo Kim & Jiseok Jeong & Changwan Kim, 2022. "Daily Peak-Electricity-Demand Forecasting Based on Residual Long Short-Term Network," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    13. Li, Ke & Shen, Ruifang & Wang, Zhenguo & Yan, Bowen & Yang, Qingshan & Zhou, Xuhong, 2023. "An efficient wind speed prediction method based on a deep neural network without future information leakage," Energy, Elsevier, vol. 267(C).
    14. Ajith, Meenu & Martínez-Ramón, Manel, 2021. "Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data," Applied Energy, Elsevier, vol. 294(C).
    15. Jeeyoung Lim & Joseph J. Kim & Sunkuk Kim, 2021. "A Holistic Review of Building Energy Efficiency and Reduction Based on Big Data," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    16. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    17. Lèbre, Éléonore & Owen, John R. & Kemp, Deanna & Valenta, Rick K., 2022. "Complex orebodies and future global metal supply: An introduction," Resources Policy, Elsevier, vol. 77(C).
    18. Lai, Wenzhe & Zhen, Zhao & Wang, Fei & Fu, Wenjie & Wang, Junlong & Zhang, Xudong & Ren, Hui, 2024. "Sub-region division based short-term regional distributed PV power forecasting method considering spatio-temporal correlations," Energy, Elsevier, vol. 288(C).
    19. Wang, Chang & Zheng, Jianqin & Liang, Yongtu & Wang, Bohong & Klemeš, Jiří Jaromír & Zhu, Zhu & Liao, Qi, 2022. "Deeppipe: An intelligent monitoring framework for operating condition of multi-product pipelines," Energy, Elsevier, vol. 261(PB).
    20. Guanghui Che & Daocheng Zhou & Rui Wang & Lei Zhou & Hongfu Zhang & Sheng Yu, 2024. "Wind Energy Assessment in Forested Regions Based on the Combination of WRF and LSTM-Attention Models," Sustainability, MDPI, vol. 16(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221027559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.