IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v279y2023ics0360544223013294.html
   My bibliography  Save this article

Integrating multi-modal data into AFSA-LSTM model for real-time oil production prediction

Author

Listed:
  • Jiang, Wei
  • Wang, Xin
  • Zhang, Shu

Abstract

Oil production prediction plays an important role in the development adjustment and optimization. Most of the existing works solve this problem by identifying the impact of historical production conditions on production via sequential analysis. Although these works have better predicting accuracy compared with traditional techniques, they still face two limitations: (i) data from a single modal cannot provide comprehensive information for prediction models; and (ii) the hyper-parameters of deep neural networks are usually set manually, which cannot guarantee the optimality. To address these issues, this work proposes a comprehensive model for real-time production prediction based on multi-modal information fusion. Firstly, we propose to fuse image features that is extracted from indicator diagrams, with production data for the establishment of prediction models. Secondly, we develop a comprehensive model for production prediction. The model applies the long short-term memory (LSTM) network as the base model and leverages an improved artificial fish swarming algorithm (AFSA) to optimize hyper-parameters of the LSTM network. Experimental results show that (1) AFSA-LSTM model achieves high prediction accuracy, with mean absolute percentage error 4.313%; (2) our model outperforms both traditional methods and typical deep learning models; (3) predicting with multi-modal data helps our model to achieve better performances.

Suggested Citation

  • Jiang, Wei & Wang, Xin & Zhang, Shu, 2023. "Integrating multi-modal data into AFSA-LSTM model for real-time oil production prediction," Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223013294
    DOI: 10.1016/j.energy.2023.127935
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223013294
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127935?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zha, Wenshu & Liu, Yuping & Wan, Yujin & Luo, Ruilan & Li, Daolun & Yang, Shan & Xu, Yanmei, 2022. "Forecasting monthly gas field production based on the CNN-LSTM model," Energy, Elsevier, vol. 260(C).
    2. Ren, Xiaoqing & Liu, Shulin & Yu, Xiaodong & Dong, Xia, 2021. "A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM," Energy, Elsevier, vol. 234(C).
    3. Laib, Oussama & Khadir, Mohamed Tarek & Mihaylova, Lyudmila, 2019. "Toward efficient energy systems based on natural gas consumption prediction with LSTM Recurrent Neural Networks," Energy, Elsevier, vol. 177(C), pages 530-542.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Yu & Jia, Chunhong & Wang, Xin & Min, Fan, 2024. "A fusion gas load prediction model with three-way residual error amendment," Energy, Elsevier, vol. 294(C).
    2. Zafar, Muhammad Hamza & Khan, Noman Mujeeb & Houran, Mohamad Abou & Mansoor, Majad & Akhtar, Naureen & Sanfilippo, Filippo, 2024. "A novel hybrid deep learning model for accurate state of charge estimation of Li-Ion batteries for electric vehicles under high and low temperature," Energy, Elsevier, vol. 292(C).
    3. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    4. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    5. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    6. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
    7. Li, Zongxiang & Li, Liwei & Chen, Jing & Wang, Dongqing, 2024. "A multi-head attention mechanism aided hybrid network for identifying batteries’ state of charge," Energy, Elsevier, vol. 286(C).
    8. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    9. Aniket Vatsa & Ananda Shankar Hati & Vadim Bolshev & Alexander Vinogradov & Vladimir Panchenko & Prasun Chakrabarti, 2023. "Deep Learning-Based Transformer Moisture Diagnostics Using Long Short-Term Memory Networks," Energies, MDPI, vol. 16(5), pages 1-14, March.
    10. Simone Barcellona & Lorenzo Codecasa & Silvia Colnago & Luigi Piegari, 2023. "Calendar Aging Effect on the Open Circuit Voltage of Lithium-Ion Battery," Energies, MDPI, vol. 16(13), pages 1-16, June.
    11. Gu, Xinyu & See, K.W. & Li, Penghua & Shan, Kangheng & Wang, Yunpeng & Zhao, Liang & Lim, Kai Chin & Zhang, Neng, 2023. "A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model," Energy, Elsevier, vol. 262(PB).
    12. Jiahui Zhao & Yong Zhu & Bin Zhang & Mingyi Liu & Jianxing Wang & Chenghao Liu & Xiaowei Hao, 2023. "Review of State Estimation and Remaining Useful Life Prediction Methods for Lithium–Ion Batteries," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    13. Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
    14. Karla Schröder & Gonzalo Farias & Sebastián Dormido-Canto & Ernesto Fabregas, 2024. "Comparative Analysis of Deep Learning Methods for Fault Avoidance and Predicting Demand in Electrical Distribution," Energies, MDPI, vol. 17(11), pages 1-13, June.
    15. Fuquan Song & Heying Ding & Yongzheng Wang & Shiming Zhang & Jinbiao Yu, 2023. "A Well Production Prediction Method of Tight Reservoirs Based on a Hybrid Neural Network," Energies, MDPI, vol. 16(6), pages 1-22, March.
    16. Su, Huai & Chi, Lixun & Zio, Enrico & Li, Zhenlin & Fan, Lin & Yang, Zhe & Liu, Zhe & Zhang, Jinjun, 2021. "An integrated, systematic data-driven supply-demand side management method for smart integrated energy systems," Energy, Elsevier, vol. 235(C).
    17. Zhang, Ying & Li, Yan-Fu, 2022. "Prognostics and health management of Lithium-ion battery using deep learning methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Zhang, Xinru & Hou, Lei & Liu, Jiaquan & Yang, Kai & Chai, Chong & Li, Yanhao & He, Sichen, 2022. "Energy consumption prediction for crude oil pipelines based on integrating mechanism analysis and data mining," Energy, Elsevier, vol. 254(PB).
    19. Xiaozhi Gao & Lichi Gao & Hsiung-Cheng Lin & Yanming Huo & Yaheng Ren & Wang Guo, 2022. "Development of MVMD-EO-LSTM Model for a Short-Term Photovoltaic Power Prediction," Energies, MDPI, vol. 15(19), pages 1-15, October.
    20. Li, Daolun & Zhou, Xia & Xu, Yanmei & Wan, Yujin & Zha, Wenshu, 2023. "Deep learning-based analysis of the main controlling factors of different gas-fields recovery rate," Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:279:y:2023:i:c:s0360544223013294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.