My bibliography
Save this item
Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mohan, Neethu & Soman, K.P. & Sachin Kumar, S., 2018. "A data-driven strategy for short-term electric load forecasting using dynamic mode decomposition model," Applied Energy, Elsevier, vol. 232(C), pages 229-244.
- Xie, Guangrui & Chen, Xi & Weng, Yang, 2020. "Input modeling and uncertainty quantification for improving volatile residential load forecasting," Energy, Elsevier, vol. 211(C).
- Enrico Saltari & Willi Semmler & Giovanni Di Bartolomeo, 2022.
"A Nash Equilibrium for Differential Games with Moving-Horizon Strategies,"
Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 1041-1054, October.
- Enrico Saltari & Willi Semmler & Giovanni Di Bartolomeo, 2021. "A Nash Equilibrium for Differential Games with Moving-horizon Strategies," Working Papers in Public Economics 197, University of Rome La Sapienza, Department of Economics and Law.
- Di Bartolomeo Giovanni & Semmler Willi & Saltari Entrico, 2022. "A Nash equilibrium for differential games with moving-horizon strategies," wp.comunite 00160, Department of Communication, University of Teramo.
- Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2020. "Machine learning with parallel neural networks for analyzing and forecasting electricity demand," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 569-597, August.
- Imani, Maryam & Ghassemian, Hassan, 2019. "Residential load forecasting using wavelet and collaborative representation transforms," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Yu, Dongmin & Zhu, Haoming & Han, Wenqi & Holburn, Daniel, 2019. "Dynamic multi agent-based management and load frequency control of PV/Fuel cell/ wind turbine/ CHP in autonomous microgrid system," Energy, Elsevier, vol. 173(C), pages 554-568.
- Sun, Yougang & Xu, Junqi & Lin, Guobin & Ni, Fei & Simoes, Rolando, 2018. "An optimal performance based new multi-objective model for heat and power hub in large scale users," Energy, Elsevier, vol. 161(C), pages 1234-1249.
- Maciej Żołądek & Alexandros Kafetzis & Rafał Figaj & Kyriakos Panopoulos, 2022. "Energy-Economic Assessment of Islanded Microgrid with Wind Turbine, Photovoltaic Field, Wood Gasifier, Battery, and Hydrogen Energy Storage," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
- Miguel López & Sergio Valero & Carlos Sans & Carolina Senabre, 2020. "Use of Available Daylight to Improve Short-Term Load Forecasting Accuracy," Energies, MDPI, vol. 14(1), pages 1-14, December.
- van Zyl, Corne & Ye, Xianming & Naidoo, Raj, 2024. "Harnessing eXplainable artificial intelligence for feature selection in time series energy forecasting: A comparative analysis of Grad-CAM and SHAP," Applied Energy, Elsevier, vol. 353(PA).
- Pan, Jeng-Shyang & Tian, Ai-Qing & Snášel, Václav & Kong, Lingping & Chu, Shu-Chuan, 2022. "Maximum power point tracking and parameter estimation for multiple-photovoltaic arrays based on enhanced pigeon-inspired optimization with Taguchi method," Energy, Elsevier, vol. 251(C).
- Hafeez, Ghulam & Khan, Imran & Jan, Sadaqat & Shah, Ibrar Ali & Khan, Farrukh Aslam & Derhab, Abdelouahid, 2021. "A novel hybrid load forecasting framework with intelligent feature engineering and optimization algorithm in smart grid," Applied Energy, Elsevier, vol. 299(C).
- Yang, Wangwang & Shi, Jing & Li, Shujian & Song, Zhaofang & Zhang, Zitong & Chen, Zexu, 2022. "A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior," Applied Energy, Elsevier, vol. 307(C).
- Shahzad Aslam & Nasir Ayub & Umer Farooq & Muhammad Junaid Alvi & Fahad R. Albogamy & Gul Rukh & Syed Irtaza Haider & Ahmad Taher Azar & Rasool Bukhsh, 2021. "Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
- Hafeez, Ghulam & Alimgeer, Khurram Saleem & Khan, Imran, 2020. "Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid," Applied Energy, Elsevier, vol. 269(C).
- Ghiasi, Mohammad, 2019. "Detailed study, multi-objective optimization, and design of an AC-DC smart microgrid with hybrid renewable energy resources," Energy, Elsevier, vol. 169(C), pages 496-507.
- Vojtech Blazek & Michal Petruzela & Tomas Vantuch & Zdenek Slanina & Stanislav Mišák & Wojciech Walendziuk, 2020. "The Estimation of the Influence of Household Appliances on the Power Quality in a Microgrid System," Energies, MDPI, vol. 13(17), pages 1-21, August.
- Óscar Trull & J. Carlos García-Díaz & Alicia Troncoso, 2019. "Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter," Energies, MDPI, vol. 12(6), pages 1-16, March.
- Yuan, Jianjuan & Huang, Ke & Han, Zhao & Wang, Chendong & Lu, Shilei & Zhou, Zhihua, 2022. "Evaluation of the operation data for improving the prediction accuracy of heating parameters in heating substation," Energy, Elsevier, vol. 238(PB).
- Su, Qingyu & Chen, Cong & Huang, Xin & Li, Jian, 2022. "Interval TrendRank method for grid node importance assessment considering new energy," Applied Energy, Elsevier, vol. 324(C).
- S. M. Mahfuz Alam & Mohd. Hasan Ali, 2020. "Equation Based New Methods for Residential Load Forecasting," Energies, MDPI, vol. 13(23), pages 1-22, December.
- Li, Chen, 2020. "Designing a short-term load forecasting model in the urban smart grid system," Applied Energy, Elsevier, vol. 266(C).
- Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
- Xue Zhou & Jianan Shou & Weiwei Cui, 2022. "A Game-Theoretic Approach to Design Solar Power Generation/Storage Microgrid System for the Community in China," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
- Wang, Xiao & Sun, Xiao-Xue & Chu, Shu-Chuan & Watada, Junzo & Pan, Jeng-Shyang, 2023. "Improved butterfly optimization algorithm applied to prediction of combined cycle power plant," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 337-353.
- Ahmad, Tanveer & Zhang, Hongcai, 2020. "Novel deep supervised ML models with feature selection approach for large-scale utilities and buildings short and medium-term load requirement forecasts," Energy, Elsevier, vol. 209(C).
- Yu, Dongmin & liu, Huanan & Bresser, Charis, 2018. "Peak load management based on hybrid power generation and demand response," Energy, Elsevier, vol. 163(C), pages 969-985.
- Li, Yalun & Gao, Xinlei & Feng, Xuning & Ren, Dongsheng & Li, Yan & Hou, Junxian & Wu, Yu & Du, Jiuyu & Lu, Languang & Ouyang, Minggao, 2022. "Battery eruption triggered by plated lithium on an anode during thermal runaway after fast charging," Energy, Elsevier, vol. 239(PB).
- Seyedeh Narjes Fallah & Mehdi Ganjkhani & Shahaboddin Shamshirband & Kwok-wing Chau, 2019. "Computational Intelligence on Short-Term Load Forecasting: A Methodological Overview," Energies, MDPI, vol. 12(3), pages 1-21, January.
- Ghulam Hafeez & Khurram Saleem Alimgeer & Zahid Wadud & Zeeshan Shafiq & Mohammad Usman Ali Khan & Imran Khan & Farrukh Aslam Khan & Abdelouahid Derhab, 2020. "A Novel Accurate and Fast Converging Deep Learning-Based Model for Electrical Energy Consumption Forecasting in a Smart Grid," Energies, MDPI, vol. 13(9), pages 1-25, May.
- Wang, Jian & Xu, Yi-Peng & She, Chen & Xu, Ping & Bagal, Hamid Asadi, 2022. "Optimal parameter identification of SOFC model using modified gray wolf optimization algorithm," Energy, Elsevier, vol. 240(C).
- Zhao, Junjie & Chang, Huawei & Luo, Xiaobing & Tu, Zhengkai & Chan, Siew Hwa, 2022. "Dynamic analysis of a CCHP system based on fuel cells integrated with methanol-reforming and dehumidification for data centers," Applied Energy, Elsevier, vol. 309(C).
- Akbal, Yıldırım & Ünlü, Kamil Demirberk, 2022. "A univariate time series methodology based on sequence-to-sequence learning for short to midterm wind power production," Renewable Energy, Elsevier, vol. 200(C), pages 832-844.
- Yang, Yiran & Li, Gang & Luo, Tao & Al-Bahrani, Mohammed & Al-Ammar, Essam A. & Sillanpaa, Mika & Ali, Shafaqat & Leng, Xiujuan, 2023. "The innovative optimization techniques for forecasting the energy consumption of buildings using the shuffled frog leaping algorithm and different neural networks," Energy, Elsevier, vol. 268(C).
- Kottath, Rahul & Singh, Priyanka, 2023. "Influencer buddy optimization: Algorithm and its application to electricity load and price forecasting problem," Energy, Elsevier, vol. 263(PC).
- Shi, Jiaqi & Li, Chenxi & Yan, Xiaohe, 2023. "Artificial intelligence for load forecasting: A stacking learning approach based on ensemble diversity regularization," Energy, Elsevier, vol. 262(PB).
- Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
- Siddiqui, Atiq W. & Basu, Rounaq, 2020. "An empirical analysis of relationships between cyclical components of oil price and tanker freight rates," Energy, Elsevier, vol. 200(C).
- Liu, Jiefeng & Zhang, Zhenhao & Fan, Xianhao & Zhang, Yiyi & Wang, Jiaqi & Zhou, Ke & Liang, Shuo & Yu, Xiaoyong & Zhang, Wei, 2022. "Power system load forecasting using mobility optimization and multi-task learning in COVID-19," Applied Energy, Elsevier, vol. 310(C).
- Qin, Yong & Li, Kun & Liang, Zhanhao & Lee, Brendan & Zhang, Fuyong & Gu, Yongcheng & Zhang, Lei & Wu, Fengzhi & Rodriguez, Dragan, 2019. "Hybrid forecasting model based on long short term memory network and deep learning neural network for wind signal," Applied Energy, Elsevier, vol. 236(C), pages 262-272.
- Li, Dongdong & Yang, Lin & Li, Chun, 2021. "Control-oriented thermal-electrochemical modeling and validation of large size prismatic lithium battery for commercial applications," Energy, Elsevier, vol. 214(C).