IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v149y2018icp814-829.html
   My bibliography  Save this item

A framework for the cost-optimal design of nearly zero energy buildings (NZEBs) in representative climates across Europe

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Rocha, Helder R.O. & Fiorotti, Rodrigo & Louzada, Danilo M. & Silvestre, Leonardo J. & Celeste, Wanderley C. & Silva, Jair A.L., 2024. "Net Zero Energy cost Building system design based on Artificial Intelligence," Applied Energy, Elsevier, vol. 355(C).
  2. António M. Raimundo & Nuno Baía Saraiva & Luisa Dias Pereira & Ana Cristina Rebelo, 2021. "Market-Oriented Cost-Effectiveness and Energy Analysis of Windows in Portugal," Energies, MDPI, vol. 14(13), pages 1-19, June.
  3. Victor Lohmann & Paulo Santos, 2020. "Trombe Wall Thermal Behavior and Energy Efficiency of a Light Steel Frame Compartment: Experimental and Numerical Assessments," Energies, MDPI, vol. 13(11), pages 1-25, May.
  4. Endrik Arumägi & Targo Kalamees, 2020. "Cost and Energy Reduction of a New nZEB Wooden Building," Energies, MDPI, vol. 13(14), pages 1-16, July.
  5. Cristina Baglivo & Delia D’Agostino & Paolo Maria Congedo, 2018. "Design of a Ventilation System Coupled with a Horizontal Air-Ground Heat Exchanger (HAGHE) for a Residential Building in a Warm Climate," Energies, MDPI, vol. 11(8), pages 1-27, August.
  6. Huang, Pei & Huang, Gongsheng & Sun, Yongjun, 2018. "A robust design of nearly zero energy building systems considering performance degradation and maintenance," Energy, Elsevier, vol. 163(C), pages 905-919.
  7. Buonomano, A. & Calise, F. & Cappiello, F.L. & Palombo, A. & Vicidomini, M., 2019. "Dynamic analysis of the integration of electric vehicles in efficient buildings fed by renewables," Applied Energy, Elsevier, vol. 245(C), pages 31-50.
  8. Fan, Cheng & Huang, Gongsheng & Sun, Yongjun, 2018. "A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level," Energy, Elsevier, vol. 164(C), pages 536-549.
  9. Alberto Cerezo-Narváez & María-José Bastante-Ceca & José-María Piñero-Vilela, 2021. "Economic and Environmental Assessment on Implementing Solar Renewable Energy Systems in Spanish Residential Homes," Energies, MDPI, vol. 14(14), pages 1-39, July.
  10. Olkkonen, Ville & Hirvonen, Janne & Heljo, Juhani & Syri, Sanna, 2021. "Effectiveness of building stock sustainability measures in a low-carbon energy system: A scenario analysis for Finland until 2050," Energy, Elsevier, vol. 235(C).
  11. Amoah B.O. Kwame & Nguyen V. Troy & Najafi Hamidreza, 2020. "A Multi-Facet Retrofit Approach to Improve Energy Efficiency of Existing Class of Single-Family Residential Buildings in Hot-Humid Climate Zones," Energies, MDPI, vol. 13(5), pages 1-26, March.
  12. Prateek M. Shrestha & Jamie L. Humphrey & Kelsey E. Barton & Elizabeth J. Carlton & John L. Adgate & Elisabeth D. Root & Shelly L. Miller, 2019. "Impact of Low-Income Home Energy-Efficiency Retrofits on Building Air Tightness and Healthy Home Indicators," Sustainability, MDPI, vol. 11(9), pages 1-22, May.
  13. López-Ochoa, Luis M. & Las-Heras-Casas, Jesús & González-Caballín, Juan M. & Carpio, Manuel, 2023. "Towards nearly zero-energy residential buildings in Mediterranean countries: The implementation of the Energy Performance of Buildings Directive 2018 in Spain," Energy, Elsevier, vol. 276(C).
  14. Gabriele Battista & Emanuele de Lieto Vollaro & Andrea Vallati & Roberto de Lieto Vollaro, 2023. "Technical–Financial Feasibility Study of a Micro-Cogeneration System in the Buildings in Italy," Energies, MDPI, vol. 16(14), pages 1-15, July.
  15. Krzysztof Skarżyński & Wojciech Żagan, 2022. "Quantitative Assessment of Architectural Lighting Designs," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
  16. Wang, Ran & Feng, Wei & Wang, Lan & Lu, Shilei, 2021. "A comprehensive evaluation of zero energy buildings in cold regions: Actual performance and key technologies of cases from China, the US, and the European Union," Energy, Elsevier, vol. 215(PA).
  17. Zhang, Sheng & Sun, Yongjun & Cheng, Yong & Huang, Pei & Oladokun, Majeed Olaide & Lin, Zhang, 2018. "Response-surface-model-based system sizing for Nearly/Net zero energy buildings under uncertainty," Applied Energy, Elsevier, vol. 228(C), pages 1020-1031.
  18. Maria Ferrara & Valentina Monetti & Enrico Fabrizio, 2018. "Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A Critical Review," Energies, MDPI, vol. 11(6), pages 1-32, June.
  19. Zinzi, Michele & Mattoni, Benedetta, 2019. "Assessment of construction cost reduction of nearly zero energy dwellings in a life cycle perspective," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  20. Zhang, Chong & Gang, Wenjie & Wang, Jinbo & Xu, Xinhua & Du, Qianzhou, 2019. "Numerical and experimental study on the thermal performance improvement of a triple glazed window by utilizing low-grade exhaust air," Energy, Elsevier, vol. 167(C), pages 1132-1143.
  21. Li, Hangxin & Wang, Shengwei & Tang, Rui, 2019. "Robust optimal design of zero/low energy buildings considering uncertainties and the impacts of objective functions," Applied Energy, Elsevier, vol. 254(C).
  22. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
  23. Ainur Tukhtamisheva & Dinar Adilova & Karolis Banionis & Aurelija Levinskytė & Raimondas Bliūdžius, 2020. "Optimization of the Thermal Insulation Level of Residential Buildings in the Almaty Region of Kazakhstan," Energies, MDPI, vol. 13(18), pages 1-16, September.
  24. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Qiao, Yaning & Zhang, Xin, 2020. "Energy performance and life cycle cost assessments of a photovoltaic/thermal assisted heat pump system," Energy, Elsevier, vol. 206(C).
  25. Cristina Baglivo & Paolo Maria Congedo & Delia D’Agostino, 2018. "Multi-Objective Analysis for the Optimization of a High Performance Slab-on- Ground Floor in a Warm Climate," Energies, MDPI, vol. 11(11), pages 1-28, November.
  26. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.
  27. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
  28. Wu, Xianguo & Li, Xinyi & Qin, Yawei & Xu, Wen & Liu, Yang, 2023. "Intelligent multiobjective optimization design for NZEBs in China: Four climatic regions," Applied Energy, Elsevier, vol. 339(C).
  29. Miguel-Angel Perea-Moreno & Francisco Manzano-Agugliaro & Quetzalcoatl Hernandez-Escobedo & Alberto-Jesus Perea-Moreno, 2018. "Peanut Shell for Energy: Properties and Its Potential to Respect the Environment," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
  30. D'Agostino, D. & Parker, D. & Epifani, I. & Crawley, D. & Lawrie, L., 2022. "How will future climate impact the design and performance of nearly zero energy buildings (NZEBs)?," Energy, Elsevier, vol. 240(C).
  31. Mario Garzón-Juan & Ana Nieto-Morote & Francisco Ruz-Vila, 2022. "Review of NZEB Criteria: Design of Life Containers in Operations Area," Energies, MDPI, vol. 15(2), pages 1-13, January.
  32. Petkov, Ivalin & Gabrielli, Paolo, 2020. "Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems," Applied Energy, Elsevier, vol. 274(C).
  33. López-Ochoa, Luis M. & Verichev, Konstantin & Las-Heras-Casas, Jesús & Carpio, Manuel, 2019. "Solar domestic hot water regulation in the Latin American residential sector with the implementation of the Energy Performance of Buildings Directive: The case of Chile," Energy, Elsevier, vol. 188(C).
  34. Roberto Bruno & Piero Bevilacqua & Cristina Carpino & Natale Arcuri, 2020. "The Cost-Optimal Analysis of a Multistory Building in the Mediterranean Area: Financial and Macroeconomic Projections," Energies, MDPI, vol. 13(5), pages 1-19, March.
  35. Iturriaga, E. & Aldasoro, U. & Terés-Zubiaga, J. & Campos-Celador, A., 2018. "Optimal renovation of buildings towards the nearly Zero Energy Building standard," Energy, Elsevier, vol. 160(C), pages 1101-1114.
  36. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo & Russo, Giuseppe, 2022. "Energy virtual networks based on electric vehicles for sustainable buildings: System modelling for comparative energy and economic analyses," Energy, Elsevier, vol. 242(C).
  37. Delia D’Agostino & Danny Parker & Ilenia Epifani & Dru Crawley & Linda Lawrie, 2022. "Datasets on Energy Simulations of Standard and Optimized Buildings under Current and Future Weather Conditions across Europe," Data, MDPI, vol. 7(5), pages 1-18, May.
  38. Li, Hangxin & Wang, Shengwei, 2019. "Coordinated optimal design of zero/low energy buildings and their energy systems based on multi-stage design optimization," Energy, Elsevier, vol. 189(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.