IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p467-d721354.html
   My bibliography  Save this article

Review of NZEB Criteria: Design of Life Containers in Operations Area

Author

Listed:
  • Mario Garzón-Juan

    (Project Engineering Department, Polytechnic University of Cartagena, c/Dr. Fleming, s/n, 30202 Cartagena, Spain)

  • Ana Nieto-Morote

    (Project Engineering Department, Polytechnic University of Cartagena, c/Dr. Fleming, s/n, 30202 Cartagena, Spain)

  • Francisco Ruz-Vila

    (Electrical Engineering Department, Polytechnic University of Cartagena, c/Dr. Fleming, s/n, 30202 Cartagena, Spain)

Abstract

The Spanish Ministry of Defense is currently attempting to reduce the amount of energy that is consumed by its military bases and has therefore raised concerns about how to make their facilities more energy efficient. To fulfill this objective, the Spanish army has developed various studies and projects, as well as a technical prescription sheet that defines the thermal transmittance values of the materials that are to be used to construct the different elements of the containers that make up the temporary housing units at Spanish military camps. Both governments and private entities have developed initiatives that are aimed at improving the energy efficiency of buildings, which are classified into two groups: those aimed at the development of mandatory building codes and those that are based on voluntary certification programs. The use of passive strategies is one of the key actions that is being implemented to achieve the NZEB category, as its first requirement is to be a “very low energy consumption building”. This paper compares the energy efficiency requirements of the tents and containers that are used in military camps and the energy-efficient design requirements that are demanded by the energy efficiency standards for buildings in the civil sector. Through this comparison, we determine how energy efficient the current living spaces in military camps are in order to define strategies that can be implemented to improve the design requirements of these living spaces so to reduce the consumption and operation logistics and to improve both operability and safety in military camp facilities.

Suggested Citation

  • Mario Garzón-Juan & Ana Nieto-Morote & Francisco Ruz-Vila, 2022. "Review of NZEB Criteria: Design of Life Containers in Operations Area," Energies, MDPI, vol. 15(2), pages 1-13, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:467-:d:721354
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/467/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/467/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mia Ala-Juusela & Hassam ur Rehman & Mari Hukkalainen & Francesco Reda, 2021. "Positive Energy Building Definition with the Framework, Elements and Challenges of the Concept," Energies, MDPI, vol. 14(19), pages 1-18, October.
    2. D'Agostino, Delia & Parker, Danny, 2018. "A framework for the cost-optimal design of nearly zero energy buildings (NZEBs) in representative climates across Europe," Energy, Elsevier, vol. 149(C), pages 814-829.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yurou Tong & Hui Yang & Li Bao & Baoxia Guo & Yanzhuo Shi & Congcong Wang, 2022. "Analysis of Thermal Insulation Thickness for a Container House in the Yanqing Zone of the Beijing 2022 Olympic and Paralympic Winter Games," IJERPH, MDPI, vol. 19(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ainur Tukhtamisheva & Dinar Adilova & Karolis Banionis & Aurelija Levinskytė & Raimondas Bliūdžius, 2020. "Optimization of the Thermal Insulation Level of Residential Buildings in the Almaty Region of Kazakhstan," Energies, MDPI, vol. 13(18), pages 1-16, September.
    2. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.
    3. Fan, Cheng & Huang, Gongsheng & Sun, Yongjun, 2018. "A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level," Energy, Elsevier, vol. 164(C), pages 536-549.
    4. Olkkonen, Ville & Hirvonen, Janne & Heljo, Juhani & Syri, Sanna, 2021. "Effectiveness of building stock sustainability measures in a low-carbon energy system: A scenario analysis for Finland until 2050," Energy, Elsevier, vol. 235(C).
    5. Gabriele Battista & Emanuele de Lieto Vollaro & Andrea Vallati & Roberto de Lieto Vollaro, 2023. "Technical–Financial Feasibility Study of a Micro-Cogeneration System in the Buildings in Italy," Energies, MDPI, vol. 16(14), pages 1-15, July.
    6. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.
    7. Delia D’Agostino & Danny Parker & Ilenia Epifani & Dru Crawley & Linda Lawrie, 2022. "Datasets on Energy Simulations of Standard and Optimized Buildings under Current and Future Weather Conditions across Europe," Data, MDPI, vol. 7(5), pages 1-18, May.
    8. D'Agostino, D. & Parker, D. & Epifani, I. & Crawley, D. & Lawrie, L., 2022. "How will future climate impact the design and performance of nearly zero energy buildings (NZEBs)?," Energy, Elsevier, vol. 240(C).
    9. Rocha, Helder R.O. & Fiorotti, Rodrigo & Louzada, Danilo M. & Silvestre, Leonardo J. & Celeste, Wanderley C. & Silva, Jair A.L., 2024. "Net Zero Energy cost Building system design based on Artificial Intelligence," Applied Energy, Elsevier, vol. 355(C).
    10. Cristina Baglivo & Delia D’Agostino & Paolo Maria Congedo, 2018. "Design of a Ventilation System Coupled with a Horizontal Air-Ground Heat Exchanger (HAGHE) for a Residential Building in a Warm Climate," Energies, MDPI, vol. 11(8), pages 1-27, August.
    11. Victor Lohmann & Paulo Santos, 2020. "Trombe Wall Thermal Behavior and Energy Efficiency of a Light Steel Frame Compartment: Experimental and Numerical Assessments," Energies, MDPI, vol. 13(11), pages 1-25, May.
    12. Zinzi, Michele & Mattoni, Benedetta, 2019. "Assessment of construction cost reduction of nearly zero energy dwellings in a life cycle perspective," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Miguel-Angel Perea-Moreno & Francisco Manzano-Agugliaro & Quetzalcoatl Hernandez-Escobedo & Alberto-Jesus Perea-Moreno, 2018. "Peanut Shell for Energy: Properties and Its Potential to Respect the Environment," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    14. Li, Hangxin & Wang, Shengwei & Tang, Rui, 2019. "Robust optimal design of zero/low energy buildings considering uncertainties and the impacts of objective functions," Applied Energy, Elsevier, vol. 254(C).
    15. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
    16. Roberto Bruno & Piero Bevilacqua & Cristina Carpino & Natale Arcuri, 2020. "The Cost-Optimal Analysis of a Multistory Building in the Mediterranean Area: Financial and Macroeconomic Projections," Energies, MDPI, vol. 13(5), pages 1-19, March.
    17. Buonomano, A. & Calise, F. & Cappiello, F.L. & Palombo, A. & Vicidomini, M., 2019. "Dynamic analysis of the integration of electric vehicles in efficient buildings fed by renewables," Applied Energy, Elsevier, vol. 245(C), pages 31-50.
    18. Krzysztof Skarżyński & Wojciech Żagan, 2022. "Quantitative Assessment of Architectural Lighting Designs," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    19. Wang, Ran & Feng, Wei & Wang, Lan & Lu, Shilei, 2021. "A comprehensive evaluation of zero energy buildings in cold regions: Actual performance and key technologies of cases from China, the US, and the European Union," Energy, Elsevier, vol. 215(PA).
    20. Maria Ferrara & Valentina Monetti & Enrico Fabrizio, 2018. "Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A Critical Review," Energies, MDPI, vol. 11(6), pages 1-32, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:467-:d:721354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.