IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v148y2018icp49-58.html
   My bibliography  Save this item

Oil price forecasting using a hybrid model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yuanrong Wang & Yinsen Miao & Alexander CY Wong & Nikita P Granger & Christian Michler, 2023. "Domain-adapted Learning and Interpretability: DRL for Gas Trading," Papers 2301.08359, arXiv.org, revised Sep 2023.
  2. Li, Jingmiao & Wang, Jun, 2020. "Forcasting of energy futures market and synchronization based on stochastic gated recurrent unit model," Energy, Elsevier, vol. 213(C).
  3. Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
  4. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
  5. Krzysztof Drachal & Michał Pawłowski, 2021. "A Review of the Applications of Genetic Algorithms to Forecasting Prices of Commodities," Economies, MDPI, vol. 9(1), pages 1-22, January.
  6. Wang, Bin & Wang, Jun, 2021. "Energy futures price prediction and evaluation model with deep bidirectional gated recurrent unit neural network and RIF-based algorithm," Energy, Elsevier, vol. 216(C).
  7. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
  8. Yousaf Raza, Muhammad & Lin, Boqiang, 2021. "Oil for Pakistan: What are the main factors affecting the oil import?," Energy, Elsevier, vol. 237(C).
  9. Hajirahimi, Zahra & Khashei, Mehdi & Etemadi, Sepideh, 2022. "A novel class of reliability-based parallel hybridization (RPH) models for time series forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  10. Karasu, Seçkin & Altan, Aytaç, 2022. "Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization," Energy, Elsevier, vol. 242(C).
  11. Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
  12. Radosław Puka & Bartosz Łamasz & Marek Michalski, 2021. "Effectiveness of Artificial Neural Networks in Hedging against WTI Crude Oil Price Risk," Energies, MDPI, vol. 14(11), pages 1-26, June.
  13. Wen, Kai & Jiao, Jianfeng & Zhao, Kang & Yin, Xiong & Liu, Yuan & Gong, Jing & Li, Cuicui & Hong, Bingyuan, 2023. "Rapid transient operation control method of natural gas pipeline networks based on user demand prediction," Energy, Elsevier, vol. 264(C).
  14. Zhen Zeng & Tucker Balch & Manuela Veloso, 2021. "Deep Video Prediction for Time Series Forecasting," Papers 2102.12061, arXiv.org, revised Nov 2021.
  15. Radosław Puka & Bartosz Łamasz, 2020. "Using Artificial Neural Networks to Find Buy Signals for WTI Crude Oil Call Options," Energies, MDPI, vol. 13(17), pages 1-20, August.
  16. Guo, Jingjun & Zhao, Zhengling & Sun, Jingyun & Sun, Shaolong, 2022. "Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework," Resources Policy, Elsevier, vol. 77(C).
  17. Liu, Weiping & Wang, Chengzhu & Li, Yonggang & Liu, Yishun & Huang, Keke, 2021. "Ensemble forecasting for product futures prices using variational mode decomposition and artificial neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
  18. Öztunç Kaymak, Öznur & Kaymak, Yiğit, 2022. "Prediction of crude oil prices in COVID-19 outbreak using real data," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
  19. Akdoğan, Kurmaş, 2020. "Fundamentals versus speculation in oil market: The role of asymmetries in price adjustment?," Resources Policy, Elsevier, vol. 67(C).
  20. Pablo Pincheira-Brown & Andrea Bentancor & Nicolás Hardy, 2023. "An Inconvenient Truth about Forecast Combinations," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
  21. Zhang, Tingting & Tang, Zhenpeng & Wu, Junchuan & Du, Xiaoxu & Chen, Kaijie, 2021. "Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm," Energy, Elsevier, vol. 229(C).
  22. Song, Yu & Chen, Bo & Hou, Na & Yang, Yi, 2022. "Terrorist attacks and oil prices: A time-varying causal relationship analysis," Energy, Elsevier, vol. 246(C).
  23. Yu, Hongchu & Fang, Zhixiang & Lu, Feng & Murray, Alan T. & Zhang, Hengcai & Peng, Peng & Mei, Qiang & Chen, Jinhai, 2019. "Impact of oil price fluctuations on tanker maritime network structure and traffic flow changes," Applied Energy, Elsevier, vol. 237(C), pages 390-403.
  24. Srijan Sood & Zhen Zeng & Naftali Cohen & Tucker Balch & Manuela Veloso, 2020. "Visual Time Series Forecasting: An Image-driven Approach," Papers 2011.09052, arXiv.org, revised Nov 2021.
  25. Shian-Chang Huang & Cheng-Feng Wu, 2018. "Energy Commodity Price Forecasting with Deep Multiple Kernel Learning," Energies, MDPI, vol. 11(11), pages 1-16, November.
  26. Hosseini, Seyed Hossein & Shakouri G., Hamed & Kazemi, Aliyeh, 2021. "Oil price future regarding unconventional oil production and its near-term deployment: A system dynamics approach," Energy, Elsevier, vol. 222(C).
  27. Chen, Lin & Wen, Fenghua & Zhang, Yun & Miao, Xiao, 2023. "Oil supply expectations and corporate social responsibility," International Review of Financial Analysis, Elsevier, vol. 87(C).
  28. Jiaying Peng & Zhenghui Li & Benjamin M. Drakeford, 2020. "Dynamic Characteristics of Crude Oil Price Fluctuation—From the Perspective of Crude Oil Price Influence Mechanism," Energies, MDPI, vol. 13(17), pages 1-19, August.
  29. Hajirahimi, Zahra & Khashei, Mehdi, 2022. "Series Hybridization of Parallel (SHOP) models for time series forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
  30. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
  31. Yee-Fan Tan & Lee-Yeng Ong & Meng-Chew Leow & Yee-Xian Goh, 2021. "Exploring Time-Series Forecasting Models for Dynamic Pricing in Digital Signage Advertising," Future Internet, MDPI, vol. 13(10), pages 1-24, September.
  32. Zhao, Yuan & Zhang, Weiguo & Gong, Xue & Wang, Chao, 2021. "A novel method for online real-time forecasting of crude oil price," Applied Energy, Elsevier, vol. 303(C).
  33. Shafiqah Azman & Dharini Pathmanathan & Aerambamoorthy Thavaneswaran, 2022. "Forecasting the Volatility of Cryptocurrencies in the Presence of COVID-19 with the State Space Model and Kalman Filter," Mathematics, MDPI, vol. 10(17), pages 1-15, September.
  34. Arash Sioofy Khoojine & Mahboubeh Shadabfar & Yousef Edrisi Tabriz, 2022. "A Mutual Information-Based Network Autoregressive Model for Crude Oil Price Forecasting Using Open-High-Low-Close Prices," Mathematics, MDPI, vol. 10(17), pages 1-20, September.
  35. Urolagin, Siddhaling & Sharma, Nikhil & Datta, Tapan Kumar, 2021. "A combined architecture of multivariate LSTM with Mahalanobis and Z-Score transformations for oil price forecasting," Energy, Elsevier, vol. 231(C).
  36. Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
  37. Alola, Andrew A. & Adekoya, Oluwasegun B. & Oliyide, Johnson A., 2022. "Outlook of oil prices and volatility from 1970 to 2040 through global energy mix-security from production to reserves: A nonparametric causality-in-quantiles approach," Resources Policy, Elsevier, vol. 79(C).
  38. Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
  39. Manickavasagam, Jeevananthan & Visalakshmi, S. & Apergis, Nicholas, 2020. "A novel hybrid approach to forecast crude oil futures using intraday data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
  40. Cen, Zhongpei & Wang, Jun, 2019. "Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer," Energy, Elsevier, vol. 169(C), pages 160-171.
  41. Ernie Hendrawaty & Rialdi Azhar & Fajrin Satria Dwi Kesumah & Sari Indah Oktanti Sembiring & Mega Metalia, 2021. "Modelling and Forecasting Crude Oil Prices during COVID-19 Pandemic," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 149-154.
  42. Herrera, Gabriel Paes & Constantino, Michel & Tabak, Benjamin Miranda & Pistori, Hemerson & Su, Jen-Je & Naranpanawa, Athula, 2019. "Long-term forecast of energy commodities price using machine learning," Energy, Elsevier, vol. 179(C), pages 214-221.
  43. Lan Bai & Xiafei Li & Yu Wei & Guiwu Wei, 2022. "Does crude oil futures price really help to predict spot oil price? New evidence from density forecasting," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(3), pages 3694-3712, July.
  44. Nademi, Arash & Nademi, Younes, 2018. "Forecasting crude oil prices by a semiparametric Markov switching model: OPEC, WTI, and Brent cases," Energy Economics, Elsevier, vol. 74(C), pages 757-766.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.