A Mutual Information-Based Network Autoregressive Model for Crude Oil Price Forecasting Using Open-High-Low-Close Prices
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Andrea Coppola, 2008.
"Forecasting oil price movements: Exploiting the information in the futures market,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(1), pages 34-56, January.
- Andrea Coppola, 2007. "Forecasting Oil Price Movements: Exploiting the Information in the Future Market," CEIS Research Paper 100, Tor Vergata University, CEIS.
- Jiang Wu & Yu Chen & Tengfei Zhou & Taiyong Li, 2019. "An Adaptive Hybrid Learning Paradigm Integrating CEEMD, ARIMA and SBL for Crude Oil Price Forecasting," Energies, MDPI, vol. 12(7), pages 1-23, April.
- Dees, Stephane & Karadeloglou, Pavlos & Kaufmann, Robert K. & Sanchez, Marcelo, 2007.
"Modelling the world oil market: Assessment of a quarterly econometric model,"
Energy Policy, Elsevier, vol. 35(1), pages 178-191, January.
- DEES Stéphane & KARADELOGLOU Pavlos & KAUFMANN Robert & SANCHEZ Marcelo, 2010. "Modelling the World Oil Market: Assessment of a Quarterly Econometric Model," EcoMod2003 330700040, EcoMod.
- Cortazar, Gonzalo & Ortega, Hector & Valencia, Consuelo, 2021. "How good are analyst forecasts of oil prices?," Energy Economics, Elsevier, vol. 102(C).
- Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
- Arash Sioofy Khoojine & Dong Han, 2020. "Stock price network autoregressive model with application to stock market turbulence," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 93(7), pages 1-15, July.
- Wu, Chunying & Wang, Jianzhou & Hao, Yan, 2022. "Deterministic and uncertainty crude oil price forecasting based on outlier detection and modified multi-objective optimization algorithm," Resources Policy, Elsevier, vol. 77(C).
- Jiang Wu & Feng Miu & Taiyong Li, 2020. "Daily Crude Oil Price Forecasting Based on Improved CEEMDAN, SCA, and RVFL: A Case Study in WTI Oil Market," Energies, MDPI, vol. 13(7), pages 1-20, April.
- Yue-Jun Zhang & Yi-Ming Wei, 2011. "The dynamic influence of advanced stock market risk on international crude oil returns: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 967-978.
- khoojine, Arash Sioofy & Han, Dong, 2019. "Network analysis of the Chinese stock market during the turbulence of 2015–2016 using log-returns, volumes and mutual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1091-1109.
- Reboredo, Juan C. & Rivera-Castro, Miguel A., 2013. "A wavelet decomposition approach to crude oil price and exchange rate dependence," Economic Modelling, Elsevier, vol. 32(C), pages 42-57.
- Agnolucci, Paolo, 2009. "Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models," Energy Economics, Elsevier, vol. 31(2), pages 316-321, March.
- Chao Chen & Jamie Twycross & Jonathan M Garibaldi, 2017. "A new accuracy measure based on bounded relative error for time series forecasting," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-23, March.
- Zhang, Jin-Liang & Zhang, Yue-Jun & Zhang, Lu, 2015. "A novel hybrid method for crude oil price forecasting," Energy Economics, Elsevier, vol. 49(C), pages 649-659.
- Ani Shabri & Ruhaidah Samsudin, 2014. "Daily Crude Oil Price Forecasting Using Hybridizing Wavelet and Artificial Neural Network Model," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-10, July.
- Miao, Hong & Ramchander, Sanjay & Wang, Tianyang & Yang, Dongxiao, 2017. "Influential factors in crude oil price forecasting," Energy Economics, Elsevier, vol. 68(C), pages 77-88.
- Abosedra, Salah & Baghestani, Hamid, 2004. "On the predictive accuracy of crude oil futures prices," Energy Policy, Elsevier, vol. 32(12), pages 1389-1393, August.
- Giada, Lorenzo & Marsili, Matteo, 2002. "Algorithms of maximum likelihood data clustering with applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 315(3), pages 650-664.
- Safari, Ali & Davallou, Maryam, 2018. "Oil price forecasting using a hybrid model," Energy, Elsevier, vol. 148(C), pages 49-58.
- Mostafa, Mohamed M. & El-Masry, Ahmed A., 2016. "Oil price forecasting using gene expression programming and artificial neural networks," Economic Modelling, Elsevier, vol. 54(C), pages 40-53.
- Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
- Ding, Yishan, 2018. "A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting," Energy, Elsevier, vol. 154(C), pages 328-336.
- Hong Miao & Sanjay Ramchander & Tianyang Wang & Jian Yang, 2018. "The impact of crude oil inventory announcements on prices: Evidence from derivatives markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(1), pages 38-65, January.
- Morana, Claudio, 2001. "A semiparametric approach to short-term oil price forecasting," Energy Economics, Elsevier, vol. 23(3), pages 325-338, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yuanxi Liu & Yinping Li & Hongling Ma & Xilin Shi & Zhuyan Zheng & Zhikai Dong & Kai Zhao, 2022. "Detection and Evaluation Technologies for Using Existing Salt Caverns to Build Energy Storage," Energies, MDPI, vol. 15(23), pages 1-19, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nademi, Arash & Nademi, Younes, 2018. "Forecasting crude oil prices by a semiparametric Markov switching model: OPEC, WTI, and Brent cases," Energy Economics, Elsevier, vol. 74(C), pages 757-766.
- Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
- Radosław Puka & Bartosz Łamasz & Marek Michalski, 2021. "Effectiveness of Artificial Neural Networks in Hedging against WTI Crude Oil Price Risk," Energies, MDPI, vol. 14(11), pages 1-26, June.
- Li, Jinchao & Zhu, Shaowen & Wu, Qianqian, 2019. "Monthly crude oil spot price forecasting using variational mode decomposition," Energy Economics, Elsevier, vol. 83(C), pages 240-253.
- Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
- Guo, Jingjun & Zhao, Zhengling & Sun, Jingyun & Sun, Shaolong, 2022. "Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework," Resources Policy, Elsevier, vol. 77(C).
- Radosław Puka & Bartosz Łamasz, 2020. "Using Artificial Neural Networks to Find Buy Signals for WTI Crude Oil Call Options," Energies, MDPI, vol. 13(17), pages 1-20, August.
- Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
- Krzysztof Drachal & Michał Pawłowski, 2021. "A Review of the Applications of Genetic Algorithms to Forecasting Prices of Commodities," Economies, MDPI, vol. 9(1), pages 1-22, January.
- Cortazar, Gonzalo & Ortega, Hector & Valencia, Consuelo, 2021. "How good are analyst forecasts of oil prices?," Energy Economics, Elsevier, vol. 102(C).
- Taiyong Li & Yingrui Zhou & Xinsheng Li & Jiang Wu & Ting He, 2019. "Forecasting Daily Crude Oil Prices Using Improved CEEMDAN and Ridge Regression-Based Predictors," Energies, MDPI, vol. 12(19), pages 1-25, September.
- Krzysztof Drachal, 2018. "Determining Time-Varying Drivers of Spot Oil Price in a Dynamic Model Averaging Framework," Energies, MDPI, vol. 11(5), pages 1-24, May.
- Manickavasagam, Jeevananthan & Visalakshmi, S. & Apergis, Nicholas, 2020. "A novel hybrid approach to forecast crude oil futures using intraday data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
- Zhao, Zhengling & Sun, Shaolong & Sun, Jingyun & Wang, Shouyang, 2024. "A novel hybrid model with two-layer multivariate decomposition for crude oil price forecasting," Energy, Elsevier, vol. 288(C).
- Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
- Hosseini, Seyed Hossein & Shakouri G., Hamed & Kazemi, Aliyeh, 2021. "Oil price future regarding unconventional oil production and its near-term deployment: A system dynamics approach," Energy, Elsevier, vol. 222(C).
- Yue-Jun Zhang & Shu-Hui Li, 2019. "The impact of investor sentiment on crude oil market risks: evidence from the wavelet approach," Quantitative Finance, Taylor & Francis Journals, vol. 19(8), pages 1357-1371, August.
- Emmanuel Senyo Fianu, 2022. "Analyzing and Forecasting Multi-Commodity Prices Using Variants of Mode Decomposition-Based Extreme Learning Machine Hybridization Approach," Forecasting, MDPI, vol. 4(2), pages 1-27, June.
More about this item
Keywords
crude oil price; west texas intermediate; network autoregressive model; forecasting; mutual information; correlation matrix; multivariate time series;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3172-:d:905728. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.