IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v148y2018icp269-282.html
   My bibliography  Save this item

Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Guixiang Xue & Yu Pan & Tao Lin & Jiancai Song & Chengying Qi & Zhipan Wang, 2019. "District Heating Load Prediction Algorithm Based on Feature Fusion LSTM Model," Energies, MDPI, vol. 12(11), pages 1-21, June.
  2. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
  3. Zhang, Guoqiang & Guo, Jifeng, 2020. "A novel ensemble method for hourly residential electricity consumption forecasting by imaging time series," Energy, Elsevier, vol. 203(C).
  4. Chen, Zhiwen & Deng, Qiao & Ren, Hao & Zhao, Zhengrun & Peng, Tao & Yang, Chunhua & Gui, Weihua, 2022. "A new energy consumption prediction method for chillers based on GraphSAGE by combining empirical knowledge and operating data," Applied Energy, Elsevier, vol. 310(C).
  5. Liu, Xuefeng & Huang, Bin & Zheng, Yulan, 2023. "Control strategy for dynamic operation of multiple chillers under random load constraints," Energy, Elsevier, vol. 270(C).
  6. Zhang, Xiao-Han & Zhu, Qun-Xiong & He, Yan-Lin & Xu, Yuan, 2018. "A novel robust ensemble model integrated extreme learning machine with multi-activation functions for energy modeling and analysis: Application to petrochemical industry," Energy, Elsevier, vol. 162(C), pages 593-602.
  7. Prince Waqas Khan & Yung-Cheol Byun & Sang-Joon Lee & Namje Park, 2020. "Machine Learning Based Hybrid System for Imputation and Efficient Energy Demand Forecasting," Energies, MDPI, vol. 13(11), pages 1-23, May.
  8. Sun, Jian & Liu, Gang & Sun, Boyang & Xiao, Gang, 2021. "Light-stacking strengthened fusion based building energy consumption prediction framework via variable weight feature selection," Applied Energy, Elsevier, vol. 303(C).
  9. Yun Duan, 2022. "A Novel Interval Energy-Forecasting Method for Sustainable Building Management Based on Deep Learning," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
  10. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
  11. Khan, Zulfiqar Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2023. "Dual stream network with attention mechanism for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 338(C).
  12. Ciulla, G. & D'Amico, A., 2019. "Building energy performance forecasting: A multiple linear regression approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  13. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
  14. Li, Guannan & Wu, Yubei & Yoon, Sungmin & Fang, Xi, 2024. "Comprehensive transferability assessment of short-term cross-building-energy prediction using deep adversarial network transfer learning," Energy, Elsevier, vol. 299(C).
  15. Zhang, Jinliang & Siya, Wang & Zhongfu, Tan & Anli, Sun, 2023. "An improved hybrid model for short term power load prediction," Energy, Elsevier, vol. 268(C).
  16. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
  17. Fang, Xi & Gong, Guangcai & Li, Guannan & Chun, Liang & Li, Wenqiang & Peng, Pei, 2021. "A hybrid deep transfer learning strategy for short term cross-building energy prediction," Energy, Elsevier, vol. 215(PB).
  18. Li, Pengtao & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "A hybrid deep learning model for short-term PV power forecasting," Applied Energy, Elsevier, vol. 259(C).
  19. Zhang, Guiqing & Tian, Chenlu & Li, Chengdong & Zhang, Jun Jason & Zuo, Wangda, 2020. "Accurate forecasting of building energy consumption via a novel ensembled deep learning method considering the cyclic feature," Energy, Elsevier, vol. 201(C).
  20. Xiong, Yongkang & Zeng, Zhenfeng & Xin, Jianbo & Song, Guanhong & Xia, Yonghong & Xu, Zaide, 2023. "Renewable energy time series regulation strategy considering grid flexible load and N-1 faults," Energy, Elsevier, vol. 284(C).
  21. Hao, Xiaochen & Guo, Tongtong & Huang, Gaolu & Shi, Xin & Zhao, Yantao & Yang, Yue, 2020. "Energy consumption prediction in cement calcination process: A method of deep belief network with sliding window," Energy, Elsevier, vol. 207(C).
  22. Li, Wenqiang & Gong, Guangcai & Fan, Houhua & Peng, Pei & Chun, Liang, 2020. "Meta-learning strategy based on user preferences and a machine recommendation system for real-time cooling load and COP forecasting," Applied Energy, Elsevier, vol. 270(C).
  23. Amber, K.P. & Ahmad, R. & Aslam, M.W. & Kousar, A. & Usman, M. & Khan, M.S., 2018. "Intelligent techniques for forecasting electricity consumption of buildings," Energy, Elsevier, vol. 157(C), pages 886-893.
  24. Jason Runge & Radu Zmeureanu, 2019. "Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review," Energies, MDPI, vol. 12(17), pages 1-27, August.
  25. Amir Mosavi & Mohsen Salimi & Sina Faizollahzadeh Ardabili & Timon Rabczuk & Shahaboddin Shamshirband & Annamaria R. Varkonyi-Koczy, 2019. "State of the Art of Machine Learning Models in Energy Systems, a Systematic Review," Energies, MDPI, vol. 12(7), pages 1-42, April.
  26. Liu, Hui & Yu, Chengqing & Wu, Haiping & Duan, Zhu & Yan, Guangxi, 2020. "A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting," Energy, Elsevier, vol. 202(C).
  27. Li, Guozhu & Ding, Chenjun & Zhao, Naini & Wei, Jiaxing & Guo, Yang & Meng, Chong & Huang, Kailiang & Zhu, Rongxin, 2024. "Research on a novel photovoltaic power forecasting model based on parallel long and short-term time series network," Energy, Elsevier, vol. 293(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.