My bibliography
Save this item
Pore-scale numerical simulation of fully coupled heat transfer process in porous volumetric solar receiver
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "Experimental study of innovative periodic cellular structures as air volumetric absorbers," Renewable Energy, Elsevier, vol. 184(C), pages 391-404.
- Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Du, Shen & Xia, Tian & He, Ya-Ling & Li, Zeng-Yao & Li, Dong & Xie, Xiang-Qian, 2020. "Experiment and optimization study on the radial graded porous volumetric solar receiver matching non-uniform solar flux distribution," Applied Energy, Elsevier, vol. 275(C).
- Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
- Barreto, Germilly & Canhoto, Paulo & Collares-Pereira, Manuel, 2019. "Three-dimensional CFD modelling and thermal performance analysis of porous volumetric receivers coupled to solar concentration systems," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Du, Shen & Tong, Zi-Xiang & Zhang, Hong-Hu & He, Ya-Ling, 2019. "Tomography-based determination of Nusselt number correlation for the porous volumetric solar receiver with different geometrical parameters," Renewable Energy, Elsevier, vol. 135(C), pages 711-718.
- Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
- Zhu, Qibin & Xuan, Yimin, 2019. "Improving the performance of volumetric solar receivers with a spectrally selective gradual structure and swirling characteristics," Energy, Elsevier, vol. 172(C), pages 467-476.
- Shi, Xuhang & Li, Chunzhe & Yang, Zhenning & Xu, Jie & Song, Jintao & Wang, Fuqiang & Shuai, Yong & Zhang, Wenjing, 2024. "Egg-tray-inspired concave foam structure on pore-scale space radiation regulation for enhancing photo-thermal-chemical synergistic conversion," Energy, Elsevier, vol. 297(C).
- Chen, Sheng & Li, Wenhao & Yan, Fuwu, 2020. "Thermal performance analysis of a porous solar cavity receiver," Renewable Energy, Elsevier, vol. 156(C), pages 558-569.
- Chen, Xue & Lyu, Jinxin & Sun, Chuang & Xia, Xinlin & Wang, Fuqiang, 2023. "Pore-scale evaluation on a volumetric solar receiver with different optical property control strategies," Energy, Elsevier, vol. 278(PB).
- Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Carballo, Jose Antonio & Carra, Maria Elena & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "CFD analysis of the performance impact of geometrical shape on volumetric absorbers in a standard cup," Renewable Energy, Elsevier, vol. 201(P1), pages 256-272.
- Li, Xinyi & Zhu, Ziliang & Xu, Zirui & Ma, Ting & Zhang, Hao & Liu, Jun & Wang, Xian & Wang, Qiuwang, 2019. "A three-dimensional pore-scale lattice Boltzmann model for investigating the supergravity effects on charging process," Applied Energy, Elsevier, vol. 254(C).
- Avila-Marin, Antonio L. & Caliot, Cyril & Alvarez de Lara, Monica & Fernandez-Reche, Jesus & Montes, Maria Jose & Martinez-Tarifa, Adela, 2019. "Homogeneous equivalent model coupled with P1-approximation for dense wire meshes volumetric air receivers," Renewable Energy, Elsevier, vol. 135(C), pages 908-919.
- Zhang, Qiangqiang & Chang, Zheshao & Fu, Mingkai & Nie, Fuliang & Ren, Ting & Li, Xin, 2023. "Performance analysis of a light uniform device for the solar receiver or reactor," Energy, Elsevier, vol. 270(C).
- Li, Xue & Sun, Yanyi & Liu, Xiao & Ming, Yang & Wu, Yupeng, 2024. "Development of a comprehensive method to estimate the optical, thermal and electrical performance of a complex PV window for building integration," Energy, Elsevier, vol. 294(C).
- Nakakura, Mitsuho & Matsubara, Koji & Bellan, Selvan & Kodama, Tatsuya, 2020. "Direct simulation of a volumetric solar receiver with different cell sizes at high outlet temperatures (1,000–1,500 °C)," Renewable Energy, Elsevier, vol. 146(C), pages 1143-1152.
- Avila-Marin, Antonio L., 2022. "CFD parametric analysis of wire meshes open volumetric receivers with axial-varied porosity and comparison with small-scale solar receiver tests," Renewable Energy, Elsevier, vol. 193(C), pages 1094-1105.
- Avila-Marin, A.L. & Fernandez-Reche, J. & Martinez-Tarifa, A., 2019. "Modelling strategies for porous structures as solar receivers in central receiver systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 15-33.
- Nidia Aracely Cisneros-Cárdenas & Rafael Cabanillas-López & Ricardo Pérez-Enciso & Guillermo Martínez-Rodríguez & Rafael García-Gutiérrez & Carlos Pérez-Rábago & Ramiro Calleja-Valdez & David Riveros-, 2021. "Study of the Radiation Flux Distribution in a Parabolic Dish Concentrator," Energies, MDPI, vol. 14(21), pages 1-15, October.
- Sun, Mingrui & Yan, Guanghan & Liang, Yiqiang & Zhao, Jiafei & Song, Yongchen, 2024. "The investigation of anisotropic kelvin cells: Forced convective heat transfer," Energy, Elsevier, vol. 292(C).
- Sun, Mingrui & Zhang, Lunxiang & Hu, Chengzhi & Zhao, Jiafei & Tang, Dawei & Song, Yongchen, 2022. "Forced convective heat transfer in optimized kelvin cells to enhance overall performance," Energy, Elsevier, vol. 242(C).
- Li, Hongyang & Hu, Chengzhi & He, Yichuan & Tang, Dawei & Wang, Kuiming & Hu, Xianfeng, 2021. "Visualized-experimental investigation on the energy storage performance of PCM infiltrated in the metal foam with varying pore densities," Energy, Elsevier, vol. 237(C).
- Du, Shen & Li, Ming-Jia & He, Ya-Ling & Shen, Sheng, 2021. "Conceptual design of porous volumetric solar receiver using molten salt as heat transfer fluid," Applied Energy, Elsevier, vol. 301(C).
- Zhang, Hao & Shuai, Yong & Lougou, Bachirou Guene & Jiang, Boshu & Yang, Dazhi & Pan, Qinghui & Wang, Fuqiang & Huang, Xing, 2022. "Effects of foam structure on thermochemical characteristics of porous-filled solar reactor," Energy, Elsevier, vol. 239(PC).
- Shuai, Yong & Zhang, Hao & Guene Lougou, Bachirou & Jiang, Boshu & Mustafa, Azeem & Wang, Chi-Hwa & Wang, Fuqiang & Zhao, Jiupeng, 2021. "Solar-driven thermochemical redox cycles of ZrO2 supported NiFe2O4 for CO2 reduction into chemical energy," Energy, Elsevier, vol. 223(C).
- Guene Lougou, Bachirou & Shuai, Yong & Zhang, Hao & Ahouannou, Clément & Zhao, Jiupeng & Kounouhewa, Basile Bruno & Tan, Heping, 2020. "Thermochemical CO2 reduction over NiFe2O4@alumina filled reactor heated by high-flux solar simulator," Energy, Elsevier, vol. 197(C).