IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224002883.html
   My bibliography  Save this article

The investigation of anisotropic kelvin cells: Forced convective heat transfer

Author

Listed:
  • Sun, Mingrui
  • Yan, Guanghan
  • Liang, Yiqiang
  • Zhao, Jiafei
  • Song, Yongchen

Abstract

The skeleton shape of the Kelvin cell plays a significant role in influencing forced convective heat transfer behaviors, and it can be tailored to enhance overall heat transfer performance (OHTP). To this end, this study conducted a comprehensive experimental and numerical comparison of the Kelvin cells (KC), Kelvin cells with elliptical skeletons (ES), and Kelvin cells with reversed elliptical skeletons (RES) to elucidate the hydraulic and thermal characteristics. The findings indicated that the pressure drop and the overall Nuseelt number of the ES is 53.0 % and 8.2 % lower than those of the KC. Consequently, the area goodness factor, which serves as an indicator of the OHTP, is 105.5 % higher in the ES compared to the KC. Conversely, the RES does not exhibit a significant advantage in the aforementioned parameters. The reduced energy loss attributable to the presence of elliptical skeletons enhances the hydraulic performance of the ES. Furthermore, the smaller recirculation area on the leeward side of the elliptical skeleton promotes improved heat transfer near the heat substrate. The ES has advantage in the fin efficiency compared with KC. The 1.25 cell height is a significant reference value for the development of heat transfer device with Kelvin cell.

Suggested Citation

  • Sun, Mingrui & Yan, Guanghan & Liang, Yiqiang & Zhao, Jiafei & Song, Yongchen, 2024. "The investigation of anisotropic kelvin cells: Forced convective heat transfer," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002883
    DOI: 10.1016/j.energy.2024.130517
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224002883
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Shen & Li, Ming-Jia & Ren, Qinlong & Liang, Qi & He, Ya-Ling, 2017. "Pore-scale numerical simulation of fully coupled heat transfer process in porous volumetric solar receiver," Energy, Elsevier, vol. 140(P1), pages 1267-1275.
    2. Wang, Hongfei & Wang, Fanxu & Li, Zongtao & Tang, Yong & Yu, Binhai & Yuan, Wei, 2016. "Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material," Applied Energy, Elsevier, vol. 176(C), pages 221-232.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Carballo, Jose Antonio & Carra, Maria Elena & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "CFD analysis of the performance impact of geometrical shape on volumetric absorbers in a standard cup," Renewable Energy, Elsevier, vol. 201(P1), pages 256-272.
    3. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    4. Ali M. Sefidan & Mehdi E. Sangari & Mathieu Sellier & Md. Imran Hossen Khan & Suvash C. Saha, 2022. "Modeling of Multi-Layer Phase Change Material in a Triplex Tube under Various Thermal Boundary Conditions," Energies, MDPI, vol. 15(9), pages 1-14, May.
    5. Sardari, Pouyan Talebizadeh & Mohammed, Hayder I. & Giddings, Donald & walker, Gavin S. & Gillott, Mark & Grant, David, 2019. "Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source," Energy, Elsevier, vol. 189(C).
    6. Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
    7. Vega-Garita, Victor & Ramirez-Elizondo, Laura & Bauer, Pavol, 2017. "Physical integration of a photovoltaic-battery system: A thermal analysis," Applied Energy, Elsevier, vol. 208(C), pages 446-455.
    8. Ling, Ziye & Wen, Xiaoyan & Zhang, Zhengguo & Fang, Xiaoming & Gao, Xuenong, 2018. "Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures," Energy, Elsevier, vol. 144(C), pages 977-983.
    9. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "Experimental study of innovative periodic cellular structures as air volumetric absorbers," Renewable Energy, Elsevier, vol. 184(C), pages 391-404.
    10. Wei, Lien Chin & Malen, Jonathan A., 2016. "Amplified charge and discharge rates in phase change materials for energy storage using spatially-enhanced thermal conductivity," Applied Energy, Elsevier, vol. 181(C), pages 224-231.
    11. Li, Xinyi & Zhu, Ziliang & Xu, Zirui & Ma, Ting & Zhang, Hao & Liu, Jun & Wang, Xian & Wang, Qiuwang, 2019. "A three-dimensional pore-scale lattice Boltzmann model for investigating the supergravity effects on charging process," Applied Energy, Elsevier, vol. 254(C).
    12. Li, Zongtao & Wu, Yuxuan & Zhuang, Baoshan & Zhao, Xuezhi & Tang, Yong & Ding, Xinrui & Chen, Kaihang, 2017. "Preparation of novel copper-powder-sintered frame/paraffin form-stable phase change materials with extremely high thermal conductivity," Applied Energy, Elsevier, vol. 206(C), pages 1147-1157.
    13. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Jiefeng Liu & Shangxin Yu & Shichang Yang & Yiyi Zhang & Xianhao Fan & Bing Gao, 2020. "Numerical Studies on the Performance of the PCM Mesh-Finned Heat Sink Base on Thermal-Flow Multiphysics Coupling Simulation," Energies, MDPI, vol. 13(18), pages 1-17, September.
    15. Du, Shen & Xia, Tian & He, Ya-Ling & Li, Zeng-Yao & Li, Dong & Xie, Xiang-Qian, 2020. "Experiment and optimization study on the radial graded porous volumetric solar receiver matching non-uniform solar flux distribution," Applied Energy, Elsevier, vol. 275(C).
    16. Nidia Aracely Cisneros-Cárdenas & Rafael Cabanillas-López & Ricardo Pérez-Enciso & Guillermo Martínez-Rodríguez & Rafael García-Gutiérrez & Carlos Pérez-Rábago & Ramiro Calleja-Valdez & David Riveros-, 2021. "Study of the Radiation Flux Distribution in a Parabolic Dish Concentrator," Energies, MDPI, vol. 14(21), pages 1-15, October.
    17. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    18. Du, Shen & Li, Ming-Jia & He, Ya-Ling & Shen, Sheng, 2021. "Conceptual design of porous volumetric solar receiver using molten salt as heat transfer fluid," Applied Energy, Elsevier, vol. 301(C).
    19. Wu, Wenhao & Huang, Xinyu & Li, Kai & Yao, Ruimin & Chen, Renjie & Zou, Ruqiang, 2017. "A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion," Applied Energy, Elsevier, vol. 190(C), pages 474-480.
    20. Li, Yuanji & Niu, Zhaoyang & Gao, Xinyu & Ji, Ruiyang & Yang, Xiaohu & Yan, Jinyue, 2023. "Experimental and numerical investigations on tilt filling design of metal foam in a heat storage tank," Renewable Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.