IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v139y2017icp580-593.html
   My bibliography  Save this item

Heat Roadmap Europe: Quantitative comparison between the electricity, heating, and cooling sectors for different European countries

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Indre Siksnelyte & Edmundas Kazimieras Zavadskas, 2019. "Achievements of the European Union Countries in Seeking a Sustainable Electricity Sector," Energies, MDPI, vol. 12(12), pages 1-16, June.
  2. Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.
  3. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
  4. Prina, Matteo Giacomo & Lionetti, Matteo & Manzolini, Giampaolo & Sparber, Wolfram & Moser, David, 2019. "Transition pathways optimization methodology through EnergyPLAN software for long-term energy planning," Applied Energy, Elsevier, vol. 235(C), pages 356-368.
  5. O’Reilly, Ryan & Cohen, Jed & Reichl, Johannes, 2024. "Achievable load shifting potentials for the European residential sector from 2022–2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  6. Wang, Yuhao & Qu, Ke & Chen, Xiangjie & Zhang, Xingxing & Riffat, Saffa, 2022. "Holistic electrification vs deep energy retrofits for optimal decarbonisation pathways of UK dwellings: A case study of the 1940s’ British post-war masonry house," Energy, Elsevier, vol. 241(C).
  7. Srinivasan, Arvind & Wu, Raphael & Heer, Philipp & Sansavini, Giovanni, 2023. "Impact of forecast uncertainty and electricity markets on the flexibility provision and economic performance of highly-decarbonized multi-energy systems," Applied Energy, Elsevier, vol. 338(C).
  8. Jarosław Brodny & Magdalena Tutak, 2020. "Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources," Energies, MDPI, vol. 13(4), pages 1-37, February.
  9. Thomaßen, Georg & Kavvadias, Konstantinos & Jiménez Navarro, Juan Pablo, 2021. "The decarbonisation of the EU heating sector through electrification: A parametric analysis," Energy Policy, Elsevier, vol. 148(PA).
  10. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
  11. Giuseppe Pinto & Elnaz Abdollahi & Alfonso Capozzoli & Laura Savoldi & Risto Lahdelma, 2019. "Optimization and Multicriteria Evaluation of Carbon-neutral Technologies for District Heating," Energies, MDPI, vol. 12(9), pages 1-19, April.
  12. Qiuyi Wu, 2023. "Theoretical Evaluation of Photovoltaic Thermal Water Source Heat Pump, Application Potential and Policy Implications: Evidence from Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
  13. Chen, Yi-kuang & Jensen, Ida Græsted & Kirkerud, Jon Gustav & Bolkesjø, Torjus Folsland, 2021. "Impact of fossil-free decentralized heating on northern European renewable energy deployment and the power system," Energy, Elsevier, vol. 219(C).
  14. Lisbona, Pilar & Frate, Guido Francesco & Bailera, Manuel & Desideri, Umberto, 2018. "Power-to-Gas: Analysis of potential decarbonization of Spanish electrical system in long-term prospective," Energy, Elsevier, vol. 159(C), pages 656-668.
  15. Francesco Tinti & Sara Kasmaee & Mohamed Elkarmoty & Stefano Bonduà & Villiam Bortolotti, 2018. "Suitability Evaluation of Specific Shallow Geothermal Technologies Using a GIS-Based Multi Criteria Decision Analysis Implementing the Analytic Hierarchic Process," Energies, MDPI, vol. 11(2), pages 1-21, February.
  16. Dominik Keiner & Larissa D.S.N.S. Barbosa & Dmitrii Bogdanov & Arman Aghahosseini & Ashish Gulagi & Solomon Oyewo & Michael Child & Siavash Khalili & Christian Breyer, 2021. "Global-Local Heat Demand Development for the Energy Transition Time Frame Up to 2050," Energies, MDPI, vol. 14(13), pages 1-51, June.
  17. Murrant, Daniel & Radcliffe, Jonathan, 2018. "Assessing energy storage technology options using a multi-criteria decision analysis-based framework," Applied Energy, Elsevier, vol. 231(C), pages 788-802.
  18. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).
  19. Neirotti, Francesco & Noussan, Michel & Simonetti, Marco, 2020. "Towards the electrification of buildings heating - Real heat pumps electricity mixes based on high resolution operational profiles," Energy, Elsevier, vol. 195(C).
  20. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
  21. Wang, Zhikun & Crawley, Jenny & Li, Francis G.N. & Lowe, Robert, 2020. "Sizing of district heating systems based on smart meter data: Quantifying the aggregated domestic energy demand and demand diversity in the UK," Energy, Elsevier, vol. 193(C).
  22. Weigert, Andreas & Hopf, Konstantin & Günther, Sebastian A. & Staake, Thorsten, 2022. "Heat pump inspections result in large energy savings when a pre-selection of households is performed: A promising use case of smart meter data," Energy Policy, Elsevier, vol. 169(C).
  23. Goldbach, Kristin & Rotaru, Andreea Mihaela & Reichert, Stefan & Stiff, George & Gölz, Sebastian, 2018. "Which digital energy services improve energy efficiency? A multi-criteria investigation with European experts," Energy Policy, Elsevier, vol. 115(C), pages 239-248.
  24. Chambers, Jonathan & Hollmuller, Pierre & Bouvard, Olivia & Schueler, Andreas & Scartezzini, Jean-Louis & Azar, Elie & Patel, Martin K., 2019. "Evaluating the electricity saving potential of electrochromic glazing for cooling and lighting at the scale of the Swiss non-residential national building stock using a Monte Carlo model," Energy, Elsevier, vol. 185(C), pages 136-147.
  25. Christopher Vella & Simon Paul Borg & Daniel Micallef, 2020. "The Effect of Shank-Space on the Thermal Performance of Shallow Vertical U-Tube Ground Heat Exchangers," Energies, MDPI, vol. 13(3), pages 1-16, January.
  26. Lin, Boqiang & Zhu, Junpeng, 2020. "Chinese electricity demand and electricity consumption efficiency: Do the structural changes matter?," Applied Energy, Elsevier, vol. 262(C).
  27. Jonas Hinker & Thomas Wohlfahrt & Emily Drewing & Sergio Felipe Contreras Paredes & Daniel Mayorga González & Johanna M. A. Myrzik, 2018. "Adaptable Energy Systems Integration by Modular, Standardized and Scalable System Architectures: Necessities and Prospects of Any Time Transition," Energies, MDPI, vol. 11(3), pages 1-17, March.
  28. Lisa Göransson & Mariliis Lehtveer & Emil Nyholm & Maria Taljegard & Viktor Walter, 2019. "The Benefit of Collaboration in the North European Electricity System Transition—System and Sector Perspectives," Energies, MDPI, vol. 12(24), pages 1-23, December.
  29. Chambers, Jonathan & Narula, Kapil & Sulzer, Matthias & Patel, Martin K., 2019. "Mapping district heating potential under evolving thermal demand scenarios and technologies: A case study for Switzerland," Energy, Elsevier, vol. 176(C), pages 682-692.
  30. Palacios-Garcia, E.J. & Moreno-Munoz, A. & Santiago, I. & Flores-Arias, J.M. & Bellido-Outeirino, F.J. & Moreno-Garcia, I.M., 2018. "A stochastic modelling and simulation approach to heating and cooling electricity consumption in the residential sector," Energy, Elsevier, vol. 144(C), pages 1080-1091.
  31. Bellocchi, Sara & De Falco, Marcello & Gambini, Marco & Manno, Michele & Stilo, Tommaso & Vellini, Michela, 2019. "Opportunities for power-to-Gas and Power-to-liquid in CO2-reduced energy scenarios: The Italian case," Energy, Elsevier, vol. 175(C), pages 847-861.
  32. Zeyen, Elisabeth & Hagenmeyer, Veit & Brown, Tom, 2021. "Mitigating heat demand peaks in buildings in a highly renewable European energy system," Energy, Elsevier, vol. 231(C).
  33. Nikola Pesic & Jaime Roset Calzada & Adrian Muros Alcojor, 2018. "Assessment of Advanced Natural Ventilation Space Cooling Potential across Southern European Coastal Region," Sustainability, MDPI, vol. 10(9), pages 1-21, August.
  34. Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "District heating load patterns and short-term forecasting for buildings and city level," Energy, Elsevier, vol. 289(C).
  35. Pavel Charvát & Lubomír Klimeš & Martin Zálešák, 2019. "Utilization of an Air-PCM Heat Exchanger in Passive Cooling of Buildings: A Simulation Study on the Energy Saving Potential in Different European Climates," Energies, MDPI, vol. 12(6), pages 1-17, March.
  36. Novosel, T. & Pukšec, T. & Duić, N. & Domac, J., 2020. "Heat demand mapping and district heating assessment in data-pour areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  37. Hvelplund, Frede & Krog, Louise & Nielsen, Steffen & Terkelsen, Elsebeth & Madsen, Kristian Brun, 2019. "Policy paradigms for optimal residential heat savings in a transition to 100% renewable energy systems," Energy Policy, Elsevier, vol. 134(C).
  38. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Lund, Rasmus Søgaard & Mathiesen, Brian Vad, 2019. "Heat Roadmap Europe: Towards EU-Wide, local heat supply strategies," Energy, Elsevier, vol. 177(C), pages 554-564.
  39. Hu, Wenxuan & Scholz, Yvonne & Yeligeti, Madhura & Deng, Ying & Jochem, Patrick, 2024. "Future electricity demand for Europe: Unraveling the dynamics of the Temperature Response Function," Applied Energy, Elsevier, vol. 368(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.