IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics036054422402351x.html
   My bibliography  Save this article

Integrated demand response method for heating multiple rooms based on fuzzy logic considering dynamic price

Author

Listed:
  • Hua, Pengmin
  • Wang, Haichao
  • Xie, Zichan
  • Lahdelma, Risto

Abstract

We consider an educational building heated by a combination of district heating (DH) and a local air source heat pump. We have developed an integrated demand response method for multiple rooms, consisting of an optimization layer and a control layer, to maintain thermal comfort and save energy and costs. For the optimization layer, we apply fuzzy logic to adjust indoor temperature setpoints to respond to dynamic heat prices and propose an optimal heat supply method to find optimal heat supply schemes. For the control layer, a multi-objective model predictive control (MPC) has been developed to manage indoor thermal conditions across multiple rooms. To test and verify the integrated demand response method, we build a multi-room simulation model using the CARNOT Toolbox. The results show that adopting different indoor temperature setpoints during working and nonworking hours, combined with the MPC method, has an energy-saving potential of 9.1 % compared to maintaining a constant indoor temperature using DH alone. Adjusting temperature setpoints using fuzzy logic utilizes the building's heat storage capacity to increase energy flexibility, reaching 16.0 % savings in energy and reducing 12.6 % heating costs.

Suggested Citation

  • Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "Integrated demand response method for heating multiple rooms based on fuzzy logic considering dynamic price," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s036054422402351x
    DOI: 10.1016/j.energy.2024.132577
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422402351X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rikkas, Rebecka & Lahdelma, Risto, 2021. "Energy supply and storage optimization for mixed-type buildings," Energy, Elsevier, vol. 231(C).
    2. Hu, Maomao & Xiao, Fu, 2018. "Price-responsive model-based optimal demand response control of inverter air conditioners using genetic algorithm," Applied Energy, Elsevier, vol. 219(C), pages 151-164.
    3. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
    4. Wei, Zhichen & Calautit, John, 2023. "Predictive control of low-temperature heating system with passive thermal mass energy storage and photovoltaic system: Impact of occupancy patterns and climate change," Energy, Elsevier, vol. 269(C).
    5. Xiong, Chengyan & Sun, Zhe & Meng, Qinglong & Li, Zeyang & Wei, Yingan & Zhao, Fan & Jiang, Le, 2022. "A simplified improved transactive control of air-conditioning demand response for determining room set-point temperature: Experimental studies," Applied Energy, Elsevier, vol. 323(C).
    6. Connolly, D., 2017. "Heat Roadmap Europe: Quantitative comparison between the electricity, heating, and cooling sectors for different European countries," Energy, Elsevier, vol. 139(C), pages 580-593.
    7. Li, Yunhai & Cui, Yu & Song, Zhiying & Zhao, Xudong & Li, Jing & Shen, Chao, 2023. "Eco-economic performance and application potential of a novel dual-source heat pump heating system," Energy, Elsevier, vol. 283(C).
    8. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    9. Åberg, M. & Fälting, L. & Forssell, A., 2016. "Is Swedish district heating operating on an integrated market? – Differences in pricing, price convergence, and marketing strategy between public and private district heating companies," Energy Policy, Elsevier, vol. 90(C), pages 222-232.
    10. Abedrabboh, Khaled & Al-Fagih, Luluwah, 2023. "Applications of mechanism design in market-based demand-side management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    11. Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "Multi-criteria evaluation of novel multi-objective model predictive control method for indoor thermal comfort," Energy, Elsevier, vol. 289(C).
    12. Yin, Mingzhou & Cai, Hanmin & Gattiglio, Andrea & Khayatian, Fazel & Smith, Roy S. & Heer, Philipp, 2024. "Data-driven predictive control for demand side management: Theoretical and experimental results," Applied Energy, Elsevier, vol. 353(PA).
    13. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    14. repec:diw:diwwpp:dp1677 is not listed on IDEAS
    15. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Valverde, José Manuel, 2017. "Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review," Applied Energy, Elsevier, vol. 203(C), pages 219-239.
    16. Savolainen, Rebecka & Lahdelma, Risto, 2022. "Optimization of renewable energy for buildings with energy storages and 15-minute power balance," Energy, Elsevier, vol. 243(C).
    17. Hu, Maomao & Xiao, Fu & Wang, Lingshi, 2017. "Investigation of demand response potentials of residential air conditioners in smart grids using grey-box room thermal model," Applied Energy, Elsevier, vol. 207(C), pages 324-335.
    18. Zhang, Junli & Ge, Bin & Xu, Hongsheng, 2013. "An equivalent marginal cost-pricing model for the district heating market," Energy Policy, Elsevier, vol. 63(C), pages 1224-1232.
    19. Song, Jingjing & Wallin, Fredrik & Li, Hailong, 2017. "District heating cost fluctuation caused by price model shift," Applied Energy, Elsevier, vol. 194(C), pages 715-724.
    20. Zhao, B.Y. & Zhao, Z.G. & Li, Y. & Wang, R.Z. & Taylor, R.A., 2019. "An adaptive PID control method to improve the power tracking performance of solar photovoltaic air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    21. Salo, Sonja & Jokisalo, Juha & Syri, Sanna & Kosonen, Risto, 2019. "Individual temperature control on demand response in a district heated office building in Finland," Energy, Elsevier, vol. 180(C), pages 946-954.
    22. Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "District heating load patterns and short-term forecasting for buildings and city level," Energy, Elsevier, vol. 289(C).
    23. Li, Hailong & Sun, Qie & Zhang, Qi & Wallin, Fredrik, 2015. "A review of the pricing mechanisms for district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 56-65.
    24. Dominković, Dominik Franjo & Wahlroos, Mikko & Syri, Sanna & Pedersen, Allan Schrøder, 2018. "Influence of different technologies on dynamic pricing in district heating systems: Comparative case studies," Energy, Elsevier, vol. 153(C), pages 136-148.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "Multi-criteria evaluation of novel multi-objective model predictive control method for indoor thermal comfort," Energy, Elsevier, vol. 289(C).
    2. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    3. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    4. Gonzalez-Salazar, Miguel & Klossek, Julia & Dubucq, Pascal & Punde, Thomas, 2023. "Portfolio optimization in district heating: Merit order or mixed integer linear programming?," Energy, Elsevier, vol. 265(C).
    5. Lin, Jing & Lin, Boqiang, 2018. "Heat tariff and subsidy in China based on heat cost analysis," Energy Economics, Elsevier, vol. 71(C), pages 411-420.
    6. Guo, Xiaodan & Xiao, Bowen, 2022. "How can pricing strategy for district heating help China realize cleaner residential heating?," Energy Economics, Elsevier, vol. 110(C).
    7. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Morovat, Navid & Athienitis, Andreas K. & Candanedo, José Agustín & Nouanegue, Hervé Frank, 2024. "Heuristic model predictive control implementation to activate energy flexibility in a fully electric school building," Energy, Elsevier, vol. 296(C).
    9. Volkova, Anna & Krupenski, Igor & Ledvanov, Aleksandr & Hlebnikov, Aleksandr & Lepiksaar, Kertu & Latõšov, Eduard & Mašatin, Vladislav, 2020. "Energy cascade connection of a low-temperature district heating network to the return line of a high-temperature district heating network," Energy, Elsevier, vol. 198(C).
    10. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    11. Schellenberg, C. & Lohan, J. & Dimache, L., 2020. "Comparison of metaheuristic optimisation methods for grid-edge technology that leverages heat pumps and thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    13. Alvaro Llaria & Jessye Dos Santos & Guillaume Terrasson & Zina Boussaada & Christophe Merlo & Octavian Curea, 2021. "Intelligent Buildings in Smart Grids: A Survey on Security and Privacy Issues Related to Energy Management," Energies, MDPI, vol. 14(9), pages 1-37, May.
    14. Chen, Yi-kuang & Jensen, Ida Græsted & Kirkerud, Jon Gustav & Bolkesjø, Torjus Folsland, 2021. "Impact of fossil-free decentralized heating on northern European renewable energy deployment and the power system," Energy, Elsevier, vol. 219(C).
    15. Hu, Maomao & Xiao, Fu & Jørgensen, John Bagterp & Wang, Shengwei, 2019. "Frequency control of air conditioners in response to real-time dynamic electricity prices in smart grids," Applied Energy, Elsevier, vol. 242(C), pages 92-106.
    16. Lago, Jesus & De Ridder, Fjo & Mazairac, Wiet & De Schutter, Bart, 2019. "A 1-dimensional continuous and smooth model for thermally stratified storage tanks including mixing and buoyancy," Applied Energy, Elsevier, vol. 248(C), pages 640-655.
    17. Moser, Simon & Puschnigg, Stefan & Rodin, Valerie, 2020. "Designing the Heat Merit Order to determine the value of industrial waste heat for district heating systems," Energy, Elsevier, vol. 200(C).
    18. Paiho, Satu & Saastamoinen, Heidi, 2018. "How to develop district heating in Finland?," Energy Policy, Elsevier, vol. 122(C), pages 668-676.
    19. Ding, Yan & Lyu, Yacong & Lu, Shilei & Wang, Ran, 2022. "Load shifting potential assessment of building thermal storage performance for building design," Energy, Elsevier, vol. 243(C).
    20. Yıldız, Çağatay & Seçilmiş, Mustafa & Arıcı, Müslüm & Mert, Mehmet Selçuk & Nižetić, Sandro & Karabay, Hasan, 2023. "An experimental study on a solar-assisted heat pump incorporated with PCM based thermal energy storage unit," Energy, Elsevier, vol. 278(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s036054422402351x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.