My bibliography
Save this item
The potential of power-to-heat in Swedish district heating systems
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rakesh Sinha & Birgitte Bak-Jensen & Jayakrishnan Radhakrishna Pillai & Hamidreza Zareipour, 2019. "Flexibility from Electric Boiler and Thermal Storage for Multi Energy System Interaction," Energies, MDPI, vol. 13(1), pages 1-21, December.
- Gravelsins, Armands & Pakere, Ieva & Tukulis, Anrijs & Blumberga, Dagnija, 2019. "Solar power in district heating. P2H flexibility concept," Energy, Elsevier, vol. 181(C), pages 1023-1035.
- Wang, Jinda & Zhou, Zhigang & Zhao, Jianing & Zheng, Jinfu & Guan, Zhiqiang, 2019. "Optimizing for clean-heating improvements in a district energy system with high penetration of wind power," Energy, Elsevier, vol. 175(C), pages 1085-1099.
- Åberg, Magnus & Lingfors, David & Olauson, Jon & Widén, Joakim, 2019. "Can electricity market prices control power-to-heat production for peak shaving of renewable power generation? The case of Sweden," Energy, Elsevier, vol. 176(C), pages 1-14.
- Kouhia, Mikko & Laukkanen, Timo & Holmberg, Henrik & Ahtila, Pekka, 2019. "District heat network as a short-term energy storage," Energy, Elsevier, vol. 177(C), pages 293-303.
- Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
- Monie, Svante W. & Åberg, Magnus, 2023. "Potential to balance load variability, induced by renewable power, using rock cavern thermal energy storage, heat pumps, and combined heat and power in Sweden," Applied Energy, Elsevier, vol. 343(C).
- Fajardy, M. & Reiner, D M., 2020.
"An overview of the electrification of residential and commercial heating and cooling and prospects for decarbonisation,"
Cambridge Working Papers in Economics
20120, Faculty of Economics, University of Cambridge.
- Mathilde Fajardy & David Reiner, 2020. "An overview of the electrification of residential and commercial heating and cooling and prospects for decarbonisation," Working Papers EPGR2037, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
- Zhang, Yang & Campana, Pietro Elia & Yang, Ying & Stridh, Bengt & Lundblad, Anders & Yan, Jinyue, 2018. "Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building," Applied Energy, Elsevier, vol. 223(C), pages 430-442.
- Jimenez-Navarro, Juan-Pablo & Kavvadias, Konstantinos & Filippidou, Faidra & Pavičević, Matija & Quoilin, Sylvain, 2020. "Coupling the heating and power sectors: The role of centralised combined heat and power plants and district heat in a European decarbonised power system," Applied Energy, Elsevier, vol. 270(C).
- Felten, Björn, 2020. "An integrated model of coupled heat and power sectors for large-scale energy system analyses," Applied Energy, Elsevier, vol. 266(C).
- Gerald Schweiger & Fabian Kuttin & Alfred Posch, 2019. "District Heating Systems: An Analysis of Strengths, Weaknesses, Opportunities, and Threats of the 4GDH," Energies, MDPI, vol. 12(24), pages 1-15, December.
- Diana Carolina Guío-Pérez & Guillermo Martinez Castilla & David Pallarès & Henrik Thunman & Filip Johnsson, 2023. "Thermochemical Energy Storage with Integrated District Heat Production–A Case Study of Sweden," Energies, MDPI, vol. 16(3), pages 1-26, January.
- Yonghoon Im, 2022. "Assessment of the Impact of Renewable Energy Expansion on the Technological Competitiveness of the Cogeneration Model," Energies, MDPI, vol. 15(18), pages 1-27, September.
- Yao, Shuai & Wu, Jianzhong & Qadrdan, Meysam, 2024. "A state-of-the-art analysis and perspectives on the 4th/5th generation district heating and cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
- Laurent Pagnier & Philippe Jacquod, 2017. "How fast can one overcome the paradox of the energy transition? A physico-economic model for the European power grid," Papers 1706.00330, arXiv.org, revised Jun 2018.
- Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
- Sang Hwa Song & Taesu Cheong, 2018. "Pattern-Based Set Partitioning Algorithm for the Integrated Sustainable Operation of a District Heating Network," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
- Serafeim Moustakidis & Ioannis Meintanis & George Halikias & Nicos Karcanias, 2019. "An Innovative Control Framework for District Heating Systems: Conceptualisation and Preliminary Results," Resources, MDPI, vol. 8(1), pages 1-15, January.
- Fernqvist, Niklas & Broberg, Sarah & Torén, Johan & Svensson, Inger-Lise, 2023. "District heating as a flexibility service: Challenges in sector coupling for increased solar and wind power production in Sweden," Energy Policy, Elsevier, vol. 172(C).
- Allouhi, Amine, 2022. "Techno-economic and environmental accounting analyses of an innovative power-to-heat concept based on solar PV systems and a geothermal heat pump," Renewable Energy, Elsevier, vol. 191(C), pages 649-661.
- Robert Fischer & Erik Elfgren & Andrea Toffolo, 2020. "Towards Optimal Sustainable Energy Systems in Nordic Municipalities," Energies, MDPI, vol. 13(2), pages 1-23, January.
- Rämä, Miika & Wahlroos, Mikko, 2018. "Introduction of new decentralised renewable heat supply in an existing district heating system," Energy, Elsevier, vol. 154(C), pages 68-79.
- Kim, Ju-Hee & Lim, Seul-Ye & Yoo, Seung-Hoon, 2021. "Public preferences for introducing a power-to-heat system in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Marczinkowski, Hannah Mareike & Østergaard, Poul Alberg, 2019. "Evaluation of electricity storage versus thermal storage as part of two different energy planning approaches for the islands Samsø and Orkney," Energy, Elsevier, vol. 175(C), pages 505-514.
- Sillman, Jani & Havukainen, Jouni & Alfasfos, Rami & Elyasi, Nashmin & Lilja, Miro & Ruuskanen, Vesa & Laasonen, Emma & Leppäkoski, Lauri & Uusitalo, Ville & Soukka, Risto, 2024. "Meta-analysis of climate impact reduction potential of hydrogen usage in 9 Power-to-X pathways," Applied Energy, Elsevier, vol. 359(C).
- Singh Gaur, Ankita & Fitiwi, Desta & Curtis, John, 2019. "Heat pumps and their role in decarbonising heating Sector: a comprehensive review," Papers WP627, Economic and Social Research Institute (ESRI).
- Kim, Ju-Hee & Kim, Hee-Hoon & Yoo, Seung-Hoon, 2022. "Social acceptance toward constructing a combined heat and power plant near people's dwellings in South Korea," Energy, Elsevier, vol. 244(PB).
- Beiron, Johanna & Göransson, Lisa & Normann, Fredrik & Johnsson, Filip, 2022. "A multiple system level modeling approach to coupled energy markets: Incentives for combined heat and power generation at the plant, city and regional energy system levels," Energy, Elsevier, vol. 254(PB).
- Pizzolato, Alberto & Sciacovelli, Adriano & Verda, Vittorio, 2019. "Centralized control of district heating networks during failure events using discrete adjoint sensitivities," Energy, Elsevier, vol. 184(C), pages 58-72.
- Pagnier, Laurent & Jacquod, Philippe, 2018. "How fast can one overcome the paradox of the energy transition? A physico-economic model for the European power grid," Energy, Elsevier, vol. 157(C), pages 550-560.
- Nageler, P. & Schweiger, G. & Schranzhofer, H. & Mach, T. & Heimrath, R. & Hochenauer, C., 2018. "Novel method to simulate large-scale thermal city models," Energy, Elsevier, vol. 157(C), pages 633-646.
- Schweiger, Gerald & Larsson, Per-Ola & Magnusson, Fredrik & Lauenburg, Patrick & Velut, Stéphane, 2017. "District heating and cooling systems – Framework for Modelica-based simulation and dynamic optimization," Energy, Elsevier, vol. 137(C), pages 566-578.
- Ma, Zheng & Knotzer, Armin & Billanes, Joy Dalmacio & Jørgensen, Bo Nørregaard, 2020. "A literature review of energy flexibility in district heating with a survey of the stakeholders’ participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
- Triebs, Merlin Sebastian & Tsatsaronis, George, 2022. "From heat demand to heat supply: How to obtain more accurate feed-in time series for district heating systems," Applied Energy, Elsevier, vol. 311(C).
- Yifan, Zhou & Wei, Hu & Le, Zheng & Yong, Min & Lei, Chen & Zongxiang, Lu & Ling, Dong, 2020. "Power and energy flexibility of district heating system and its application in wide-area power and heat dispatch," Energy, Elsevier, vol. 190(C).
- Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
- Kirkerud, Jon Gustav & Bolkesjø, Torjus Folsland & Trømborg, Erik, 2017. "Power-to-heat as a flexibility measure for integration of renewable energy," Energy, Elsevier, vol. 128(C), pages 776-784.
- Marczinkowski, Hannah Mareike & Østergaard, Poul Alberg, 2018. "Residential versus communal combination of photovoltaic and battery in smart energy systems," Energy, Elsevier, vol. 152(C), pages 466-475.
- Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
- Vandermeulen, Annelies & van der Heijde, Bram & Helsen, Lieve, 2018. "Controlling district heating and cooling networks to unlock flexibility: A review," Energy, Elsevier, vol. 151(C), pages 103-115.