IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v61y2013icp249-266.html
   My bibliography  Save this item

Distributed energy resource system optimisation using mixed integer linear programming

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bohlayer, Markus & Zöttl, Gregor, 2018. "Low-grade waste heat integration in distributed energy generation systems - An economic optimization approach," Energy, Elsevier, vol. 159(C), pages 327-343.
  2. Ikeda, Shintaro & Ooka, Ryozo, 2015. "Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system," Applied Energy, Elsevier, vol. 151(C), pages 192-205.
  3. Li, HongQiang & Kang, ShuShuo & Yu, Zhun & Cai, Bo & Zhang, GuoQiang, 2014. "A feasible system integrating combined heating and power system with ground-source heat pump," Energy, Elsevier, vol. 74(C), pages 240-247.
  4. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimization framework for distributed energy systems with integrated electrical grid constraints," Applied Energy, Elsevier, vol. 171(C), pages 296-313.
  5. Ehsan, Ali & Yang, Qiang, 2019. "Scenario-based investment planning of isolated multi-energy microgrids considering electricity, heating and cooling demand," Applied Energy, Elsevier, vol. 235(C), pages 1277-1288.
  6. Li, Longxi & Mu, Hailin & Gao, Weijun & Li, Miao, 2014. "Optimization and analysis of CCHP system based on energy loads coupling of residential and office buildings," Applied Energy, Elsevier, vol. 136(C), pages 206-216.
  7. Orehounig, Kristina & Evins, Ralph & Dorer, Viktor, 2015. "Integration of decentralized energy systems in neighbourhoods using the energy hub approach," Applied Energy, Elsevier, vol. 154(C), pages 277-289.
  8. Woldeyohannes, Abraham Debebe & Woldemichael, Dereje Engida & Baheta, Aklilu Tesfamichael, 2016. "Sustainable renewable energy resources utilization in rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 1-9.
  9. Liu, Xuezhi & Yan, Zheng & Wu, Jianzhong, 2019. "Optimal coordinated operation of a multi-energy community considering interactions between energy storage and conversion devices," Applied Energy, Elsevier, vol. 248(C), pages 256-273.
  10. Köfinger, M. & Schmidt, R.R. & Basciotti, D. & Terreros, O. & Baldvinsson, I. & Mayrhofer, J. & Moser, S. & Tichler, R. & Pauli, H., 2018. "Simulation based evaluation of large scale waste heat utilization in urban district heating networks: Optimized integration and operation of a seasonal storage," Energy, Elsevier, vol. 159(C), pages 1161-1174.
  11. Timo Kannengießer & Maximilian Hoffmann & Leander Kotzur & Peter Stenzel & Fabian Schuetz & Klaus Peters & Stefan Nykamp & Detlef Stolten & Martin Robinius, 2019. "Reducing Computational Load for Mixed Integer Linear Programming: An Example for a District and an Island Energy System," Energies, MDPI, vol. 12(14), pages 1-27, July.
  12. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2017. "Benefit allocation for distributed energy network participants applying game theory based solutions," Energy, Elsevier, vol. 119(C), pages 384-391.
  13. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2016. "Multi-objective optimization of a distributed energy network integrated with heating interchange," Energy, Elsevier, vol. 109(C), pages 353-364.
  14. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
  15. Vilppu Eloranta & Aki Grönman & Aleksandra Woszczek, 2021. "Case Study and Feasibility Analysis of Multi-Objective Life Cycle Energy System Optimization in a Nordic Campus Building," Energies, MDPI, vol. 14(22), pages 1-17, November.
  16. Rui Li & Wei Wang & Zhe Chen & Jiuchun Jiang & Weige Zhang, 2017. "A Review of Optimal Planning Active Distribution System: Models, Methods, and Future Researches," Energies, MDPI, vol. 10(11), pages 1-27, October.
  17. Rey, Anthony & Zmeureanu, Radu, 2018. "Multi-objective optimization framework for the selection of configuration and equipment sizing of solar thermal combisystems," Energy, Elsevier, vol. 145(C), pages 182-194.
  18. Thibaut Résimont & Quentin Louveaux & Pierre Dewallef, 2021. "Optimization Tool for the Strategic Outline and Sizing of District Heating Networks Using a Geographic Information System," Energies, MDPI, vol. 14(17), pages 1-24, September.
  19. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Weng, Peifen & Ren, Jianxing, 2018. "Design and operation optimization of organic Rankine cycle coupled trigeneration systems," Energy, Elsevier, vol. 142(C), pages 666-677.
  20. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
  21. Imran, Muhammad & Amir, Namra, 2015. "A short-run solution to the power crisis of Pakistan," Energy Policy, Elsevier, vol. 87(C), pages 382-391.
  22. Pickering, B. & Choudhary, R., 2019. "District energy system optimisation under uncertain demand: Handling data-driven stochastic profiles," Applied Energy, Elsevier, vol. 236(C), pages 1138-1157.
  23. Clarke, Fiona & Dorneanu, Bogdan & Mechleri, Evgenia & Arellano-Garcia, Harvey, 2021. "Optimal design of heating and cooling pipeline networks for residential distributed energy resource systems," Energy, Elsevier, vol. 235(C).
  24. Alberto Fichera & Mattia Frasca & Rosaria Volpe, 2020. "A cost-based approach for evaluating the impact of a network of distributed energy systems on the centralized energy supply," Energy & Environment, , vol. 31(1), pages 77-87, February.
  25. Di Somma, M. & Yan, B. & Bianco, N. & Graditi, G. & Luh, P.B. & Mongibello, L. & Naso, V., 2017. "Multi-objective design optimization of distributed energy systems through cost and exergy assessments," Applied Energy, Elsevier, vol. 204(C), pages 1299-1316.
  26. Wirtz, Marco & Kivilip, Lukas & Remmen, Peter & Müller, Dirk, 2020. "5th Generation District Heating: A novel design approach based on mathematical optimization," Applied Energy, Elsevier, vol. 260(C).
  27. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout," Energy, Elsevier, vol. 116(P1), pages 619-636.
  28. Ikeda, Shintaro & Ooka, Ryozo, 2019. "Application of differential evolution-based constrained optimization methods to district energy optimization and comparison with dynamic programming," Applied Energy, Elsevier, vol. 254(C).
  29. Wierzbowski, Michal & Filipiak, Izabela & Lyzwa, Wojciech, 2017. "Polish energy policy 2050 – An instrument to develop a diversified and sustainable electricity generation mix in coal-based energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 51-70.
  30. Wang, Beibei & Chen, Li & Wang, Jiale & Zhao, Shengnan, 2022. "Microgrid distributed energy resources planning based on a long-term dynamic microsimulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 236-253.
  31. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
  32. Fuentes-Cortés, Luis Fabián & Dowling, Alexander W. & Rubio-Maya, Carlos & Zavala, Víctor M. & Ponce-Ortega, José María, 2016. "Integrated design and control of multigeneration systems for building complexes," Energy, Elsevier, vol. 116(P2), pages 1403-1416.
  33. Mashayekh, Salman & Stadler, Michael & Cardoso, Gonçalo & Heleno, Miguel, 2017. "A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids," Applied Energy, Elsevier, vol. 187(C), pages 154-168.
  34. A. Rahman, Hasimah & Majid, Md. Shah & Rezaee Jordehi, A. & Chin Kim, Gan & Hassan, Mohammad Yusri & O. Fadhl, Saeed, 2015. "Operation and control strategies of integrated distributed energy resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1412-1420.
  35. Shuai Yu & Yi Yang & Shuqin Chen & Haowei Xing & Yinan Guo & Weijia Feng & Jianchao Zhang & Junhan Zhang, 2024. "Study on the Application of a Multi-Energy Complementary Distributed Energy System Integrating Waste Heat and Surplus Electricity for Hydrogen Production," Sustainability, MDPI, vol. 16(5), pages 1-46, February.
  36. Iturriaga, E. & Aldasoro, U. & Campos-Celador, A. & Sala, J.M., 2017. "A general model for the optimization of energy supply systems of buildings," Energy, Elsevier, vol. 138(C), pages 954-966.
  37. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
  38. Li, Longxi & Mu, Hailin & Li, Nan & Li, Miao, 2016. "Economic and environmental optimization for distributed energy resource systems coupled with district energy networks," Energy, Elsevier, vol. 109(C), pages 947-960.
  39. Yang, Yun & Zhang, Shijie & Xiao, Yunhan, 2015. "Optimal design of distributed energy resource systems coupled with energy distribution networks," Energy, Elsevier, vol. 85(C), pages 433-448.
  40. Rocha, Paula & Kaut, Michal & Siddiqui, Afzal S., 2016. "Energy-efficient building retrofits: An assessment of regulatory proposals under uncertainty," Energy, Elsevier, vol. 101(C), pages 278-287.
  41. Zhigang Duan & Yamin Yan & Xiaohan Yan & Qi Liao & Wan Zhang & Yongtu Liang & Tianqi Xia, 2017. "An MILP Method for Design of Distributed Energy Resource System Considering Stochastic Energy Supply and Demand," Energies, MDPI, vol. 11(1), pages 1-23, December.
  42. Tian, Zhe & Niu, Jide & Lu, Yakai & He, Shunming & Tian, Xue, 2016. "The improvement of a simulation model for a distributed CCHP system and its influence on optimal operation cost and strategy," Applied Energy, Elsevier, vol. 165(C), pages 430-444.
  43. Prasanna, Ashreeta & Dorer, Viktor & Vetterli, Nadège, 2017. "Optimisation of a district energy system with a low temperature network," Energy, Elsevier, vol. 137(C), pages 632-648.
  44. Alabi, Tobi Michael & Aghimien, Emmanuel I. & Agbajor, Favour D. & Yang, Zaiyue & Lu, Lin & Adeoye, Adebusola R. & Gopaluni, Bhushan, 2022. "A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems," Renewable Energy, Elsevier, vol. 194(C), pages 822-849.
  45. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
  46. Marquant, Julien F. & Evins, Ralph & Bollinger, L. Andrew & Carmeliet, Jan, 2017. "A holarchic approach for multi-scale distributed energy system optimisation," Applied Energy, Elsevier, vol. 208(C), pages 935-953.
  47. Falke, Tobias & Krengel, Stefan & Meinerzhagen, Ann-Kathrin & Schnettler, Armin, 2016. "Multi-objective optimization and simulation model for the design of distributed energy systems," Applied Energy, Elsevier, vol. 184(C), pages 1508-1516.
  48. Varma, Rashmi & Sushil,, 2019. "Bridging the electricity demand and supply gap using dynamic modeling in the Indian context," Energy Policy, Elsevier, vol. 132(C), pages 515-535.
  49. Yang, Yun & Zhang, Shijie & Xiao, Yunhan, 2015. "An MILP (mixed integer linear programming) model for optimal design of district-scale distributed energy resource systems," Energy, Elsevier, vol. 90(P2), pages 1901-1915.
  50. Gao, Jiajia & Kang, Jing & Zhang, Chong & Gang, Wenjie, 2018. "Energy performance and operation characteristics of distributed energy systems with district cooling systems in subtropical areas under different control strategies," Energy, Elsevier, vol. 153(C), pages 849-860.
  51. Henao, Felipe & Rodriguez, Yeny & Viteri, Juan Pablo & Dyner, Isaac, 2019. "Optimising the insertion of renewables in the Colombian power sector," Renewable Energy, Elsevier, vol. 132(C), pages 81-92.
  52. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
  53. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
  54. Omu, Akomeno & Hsieh, Shanshan & Orehounig, Kristina, 2016. "Mixed integer linear programming for the design of solar thermal energy systems with short-term storage," Applied Energy, Elsevier, vol. 180(C), pages 313-326.
  55. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Weng, Peifen & Ren, Jianxing, 2018. "Coupling optimization of urban spatial structure and neighborhood-scale distributed energy systems," Energy, Elsevier, vol. 144(C), pages 472-481.
  56. Patrick Wilk & Ning Wang & Jie Li, 2024. "Multi-Agent Reinforcement Learning for Smart Community Energy Management," Energies, MDPI, vol. 17(20), pages 1-21, October.
  57. Wen-Hsien Tsai & Chih-Hao Yang & Cheng-Tsu Huang & Yen-Ying Wu, 2017. "The impact of the carbon tax policy on green building strategy," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 60(8), pages 1412-1438, August.
  58. Husein, Munir & Chung, Il-Yop, 2018. "Optimal design and financial feasibility of a university campus microgrid considering renewable energy incentives," Applied Energy, Elsevier, vol. 225(C), pages 273-289.
  59. Annette Steingrube & Keyu Bao & Stefan Wieland & Andrés Lalama & Pithon M. Kabiro & Volker Coors & Bastian Schröter, 2021. "A Method for Optimizing and Spatially Distributing Heating Systems by Coupling an Urban Energy Simulation Platform and an Energy System Model," Resources, MDPI, vol. 10(5), pages 1-19, May.
  60. Rigo-Mariani, Rémy & Chea Wae, Sean Ooi & Mazzoni, Stefano & Romagnoli, Alessandro, 2020. "Comparison of optimization frameworks for the design of a multi-energy microgrid," Applied Energy, Elsevier, vol. 257(C).
  61. De Mel, Ishanki & Klymenko, Oleksiy V. & Short, Michael, 2024. "Discrete optimal designs for distributed energy systems with nonconvex multiphase optimal power flow," Applied Energy, Elsevier, vol. 353(PB).
  62. Elsido, Cristina & Bischi, Aldo & Silva, Paolo & Martelli, Emanuele, 2017. "Two-stage MINLP algorithm for the optimal synthesis and design of networks of CHP units," Energy, Elsevier, vol. 121(C), pages 403-426.
  63. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.
  64. Qiu, Rui & Liao, Qi & Yan, Jie & Yan, Yamin & Guo, Zhichao & Liang, Yongtu & Zhang, Haoran, 2021. "The coupling impact of subsystem interconnection and demand response on the distributed energy systems: A case study of the composite community in China," Energy, Elsevier, vol. 228(C).
  65. Friebe, Maximilian & Karasu, Arda & Kriegel, Martin, 2023. "Methodology to compare and optimize district heating and decentralized heat supply for energy transformation on a municipality level," Energy, Elsevier, vol. 282(C).
  66. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
  67. Fichera, Alberto & Frasca, Mattia & Volpe, Rosaria, 2017. "Complex networks for the integration of distributed energy systems in urban areas," Applied Energy, Elsevier, vol. 193(C), pages 336-345.
  68. De Mel, Ishanki & Bierkens, Floris & Liu, Xinyao & Leach, Matthew & Chitnis, Mona & Liu, Lirong & Short, Michael, 2023. "A decision-support framework for residential heating decarbonisation policymaking," Energy, Elsevier, vol. 268(C).
  69. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing & Lao, Changshi, 2017. "Profit allocation analysis among the distributed energy network participants based on Game-theory," Energy, Elsevier, vol. 118(C), pages 783-794.
  70. Iturriaga, E. & Aldasoro, U. & Terés-Zubiaga, J. & Campos-Celador, A., 2018. "Optimal renovation of buildings towards the nearly Zero Energy Building standard," Energy, Elsevier, vol. 160(C), pages 1101-1114.
  71. Yuehong Lu & Zafar A. Khan & Manuel S. Alvarez-Alvarado & Yang Zhang & Zhijia Huang & Muhammad Imran, 2020. "A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources," Sustainability, MDPI, vol. 12(12), pages 1-31, June.
  72. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2017. "Decarbonizing the electricity grid: The impact on urban energy systems, distribution grids and district heating potential," Applied Energy, Elsevier, vol. 191(C), pages 125-140.
  73. Zahraa Hijazi & Junho Hong, 2024. "Optimal Operation of Residential Battery Energy Storage Systems under COVID-19 Load Changes," Energies, MDPI, vol. 17(6), pages 1-16, March.
  74. David Grosspietsch & Marissa Saenger & Bastien Girod, 2019. "Matching decentralized energy production and local consumption: A review of renewable energy systems with conversion and storage technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(4), July.
  75. Terreros, O. & Spreitzhofer, J. & Basciotti, D. & Schmidt, R.R. & Esterl, T. & Pober, M. & Kerschbaumer, M. & Ziegler, M., 2020. "Electricity market options for heat pumps in rural district heating networks in Austria," Energy, Elsevier, vol. 196(C).
  76. Martín-Martínez, F. & Sánchez-Miralles, A. & Rivier, M. & Calvillo, C.F., 2017. "Centralized vs distributed generation. A model to assess the relevance of some thermal and electric factors. Application to the Spanish case study," Energy, Elsevier, vol. 134(C), pages 850-863.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.