IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v38y2010i1p419-431.html
   My bibliography  Save this item

Understanding the formative stage of technological innovation system development: The case of natural gas as an automotive fuel

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Paula Kivimaa & Karoline S. Rogge, 2020. "Interplay of Policy Experimentation and Institutional Change in Transformative Policy Mixes: The Case of Mobility as a Service in Finland," SPRU Working Paper Series 2020-17, SPRU - Science Policy Research Unit, University of Sussex Business School.
  2. Bajmócy, Zoltán & Vas, Zsófia, 2012. "Az innovációs rendszerek 25 éve. Szakirodalmi áttekintés evolúciós közgazdaságtani megközelítésben [25 years of innovation systems. A literature review from the angle of evolutionary economics]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1233-1256.
  3. De Oliveira, Luiz Gustavo Silva & Negro, Simona O., 2019. "Contextual structures and interaction dynamics in the Brazilian Biogas Innovation System," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 462-481.
  4. Laatsit, Mart & Lindholm-Dahlstrand, Åsa & Nilsson, Magnus, 2023. "Capturing the system-level effects of innovation policy: an assessment of publicly funded innovative entrepreneurship in Sweden," Papers in Innovation Studies 2023/12, Lund University, CIRCLE - Centre for Innovation Research.
  5. Davies, Jocelyn & Maru, Yiheyis & Hall, Andy & Abdourhamane, Issoufou Kollo & Adegbidi, Anselme & Carberry, Peter & Dorai, Kumuda & Ennin, Stella Ama & Etwire, Prince Maxwell & McMillan, Larelle & Njo, 2018. "Understanding innovation platform effectiveness through experiences from west and central Africa," Agricultural Systems, Elsevier, vol. 165(C), pages 321-334.
  6. Steffen S. Bettin, 2020. "Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 371-395, November.
  7. Ghazinoory, Sepehr & Nasri, Shohreh & Ameri, Fatemeh & Montazer, Gholam Ali & Shayan, Ali, 2020. "Why do we need ‘Problem-oriented Innovation System (PIS)’ for solving macro-level societal problems?," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
  8. van der Loos, Adriaan & Normann, Håkon E. & Hanson, Jens & Hekkert, Marko P., 2021. "The co-evolution of innovation systems and context: Offshore wind in Norway and the Netherlands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  9. Berg, S. & Wustmans, M. & Bröring, S., 2019. "Identifying first signals of emerging dominance in a technological innovation system: A novel approach based on patents," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 706-722.
  10. Roper, Stephen & Tapinos, Efstathios, 2016. "Taking risks in the face of uncertainty: An exploratory analysis of green innovation," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 357-363.
  11. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  12. Yap, Xiao-Shan & Truffer, Bernhard, 2019. "Shaping selection environments for industrial catch-up and sustainability transitions: A systemic perspective on endogenizing windows of opportunity," Research Policy, Elsevier, vol. 48(4), pages 1030-1047.
  13. Norouzi, F. & Hoppe, T. & Kamp, L.M. & Manktelow, C. & Bauer, P., 2023. "Diagnosis of the implementation of smart grid innovation in The Netherlands and corrective actions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
  14. Zou, Hongyang & Du, Huibin & Ren, Jingzheng & Sovacool, Benjamin K. & Zhang, Yongjie & Mao, Guozhu, 2017. "Market dynamics, innovation, and transition in China's solar photovoltaic (PV) industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 197-206.
  15. Konstantinos Karanasios & Paul Parker, 2018. "Explaining the Diffusion of Renewable Electricity Technologies in Canadian Remote Indigenous Communities through the Technological Innovation System Approach," Sustainability, MDPI, vol. 10(11), pages 1-28, October.
  16. Nasiri, Masoud & Ramazani Khorshid-Doust, Reza & Bagheri Moghaddam, Nasser, 2013. "Effects of under-development and oil-dependency of countries on the formation of renewable energy technologies: A comparative study of hydrogen and fuel cell technology development in Iran and the Net," Energy Policy, Elsevier, vol. 63(C), pages 588-598.
  17. Arteconi, A. & Polonara, F., 2013. "LNG as vehicle fuel and the problem of supply: The Italian case study," Energy Policy, Elsevier, vol. 62(C), pages 503-512.
  18. Nasiri, Masoud & Ramazani Khorshid-Doust, Reza & Bagheri Moghaddam, Nasser, 2015. "The status of the hydrogen and fuel cell innovation system in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 775-783.
  19. Kebebe, E., 2019. "Bridging technology adoption gaps in livestock sector in Ethiopia: A innovation system perspective," Technology in Society, Elsevier, vol. 57(C), pages 30-37.
  20. Walrave, Bob & Raven, Rob, 2016. "Modelling the dynamics of technological innovation systems," Research Policy, Elsevier, vol. 45(9), pages 1833-1844.
  21. Hui‐Ru Chi & Hsuan‐Pei Ho & Pei‐Kuan Lin, 2022. "Survival strategies of the sharing economy from the pandemic to a new normal: A dynamic capabilities approach," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(7), pages 3219-3234, October.
  22. Raslavičius, Laurencas & Keršys, Artūras & Mockus, Saulius & Keršienė, Neringa & Starevičius, Martynas, 2014. "Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 513-525.
  23. Marletto, Gerardo, 2012. "Which conceptual foundations for environmental policies? An institutional and evolutionary framework of economic change," MPRA Paper 36441, University Library of Munich, Germany.
  24. Edler, Jakob, 2023. "Demand, public procurement and transformation," Discussion Papers "Innovation Systems and Policy Analysis" 79, Fraunhofer Institute for Systems and Innovation Research (ISI).
  25. G. Marletto, 2013. "Car and the city: Socio-technical pathways to 2030," Working Paper CRENoS 201306, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
  26. Jakob Edler, 2023. "Demand, public procurement and transformation," MIOIR Working Paper Series 2023-03, The Manchester Institute of Innovation Research (MIoIR), The University of Manchester.
  27. Marletto, Gerardo, 2011. "Structure, agency and change in the car regime. A review of the literature," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 71-88.
  28. Kebede, Kassahun Y. & Mitsufuji, Toshio, 2017. "Technological innovation system building for diffusion of renewable energy technology: A case of solar PV systems in Ethiopia," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 242-253.
  29. Kebebe, E. & Duncan, AJ & Klerkx, L. & de Boer, I.J.M. & Oosting, S.J., 2015. "Understanding socio-economic and policy constraints to dairy development in Ethiopia: A coupled functional-structural innovation systems analysis," Agricultural Systems, Elsevier, vol. 141(C), pages 69-78.
  30. Gerardo Marletto, 2012. "Which Conceptual Foundations For Environmental Policies? An Institutional And Evolutionary Framework Of Economic Change," Working Papers 0112, CREI Università degli Studi Roma Tre, revised 2012.
  31. Marletto, Gerardo & Ortolan, Chiara, 2017. "Testing the integration of political discourses into the socio-technical map of urban mobility," Working Papers 17_2, SIET Società Italiana di Economia dei Trasporti e della Logistica.
  32. Kristin Reichardt & Karoline S. Rogge & Simona Negro & Marko Hekkert, 2015. "Analyzing interdependencies between policy mixes and technological innovation systems: the case of offshore wind in Germany," Innovation Studies Utrecht (ISU) working paper series 15-04, Utrecht University, Department of Innovation Studies, revised Aug 2015.
  33. Dehdarian, Amin & Tucci, Christopher L, 2021. "A complex network approach for analyzing early evolution of smart grid innovations in Europe," Applied Energy, Elsevier, vol. 298(C).
  34. Schaube, P. & Ise, A. & Clementi, L., 2022. "Distributed photovoltaic generation in Argentina: An analysis based on the technical innovation system framework," Technology in Society, Elsevier, vol. 68(C).
  35. Marletto, Gerardo, 2019. "Who will drive the transition to self-driving? A socio-technical analysis of the future impact of automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 221-234.
  36. Minh, Thai Thi, 2019. "Unpacking the systemic problems and blocking mechanisms of a regional agricultural innovation system: An integrated regional-functional-structural analysis," Agricultural Systems, Elsevier, vol. 173(C), pages 268-280.
  37. Samuel Wicki & Erik G. Hansen, 2019. "Green technology innovation: Anatomy of exploration processes from a learning perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 28(6), pages 970-988, September.
  38. Marletto, Gerardo, 2014. "Car and the city: Socio-technical transition pathways to 2030," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 164-178.
  39. Haessler, Philipp & Giones, Ferran & Brem, Alexander, 2023. "The who and how of commercializing emerging technologies: A technology-focused review," Technovation, Elsevier, vol. 121(C).
  40. Lazarevic, David & Kautto, Petrus & Antikainen, Riina, 2020. "Finland's wood-frame multi-storey construction innovation system: Analysing motors of creative destruction," Forest Policy and Economics, Elsevier, vol. 110(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.