IDEAS home Printed from https://ideas.repec.org/p/sit/wpaper/17_2.html
   My bibliography  Save this paper

Testing the integration of political discourses into the socio-technical map of urban mobility

Author

Listed:
  • Marletto, Gerardo
  • Ortolan, Chiara

Abstract

With this paper we want to verify if the integration of political discourses into the socio-technical map (ST-map) will help to achieve a better understanding of the past, present and future innovation processes affecting the societal function of urban mobility. We test the modified ST-map in two cases: 1) The revision of the 2030 scenarios of urban mobility that were proposed in Marletto (2014), and 2) The retrospective analysis of the Freiburg (D) case. The two tests prove that with the integration of political discourses the ST-map improves its ability to represent the dynamics of urban mobility (both past and future). In particular, the modified ST-map shows that there is a mutual dependence between the actual policy approach to urban mobility, and the ability of competing networks of influencing the arena where different political discourses face each other. Moreover, it is apparent that more sustainable practice may eventually emerge only if a new network of innovators is able to scale up a cumulative causation process involving legitimacy, empowerment and supporting policies. The paper aims at revising a former Cost Benefit Analysis exercise, produced just two years after line opening, in the light of the changed conditions. In particular, applying a similar methodology and estimating on the basis of third-party sources the current Origin-Destination demand matrix, we will recalculate the economic feasibility indicators. The cost-benefit analysis gives a marginally positive result in the most-likely case. To the contrary, extrapolating pre-competition trends without competition, gives a very negative result. In fact, we show that travel time benefits are a fraction of the cost. The largest benefits comes from the new demand, which in turn comes from increased frequency, from the introduction of mixed traditional/high-speed services and from the fall in prices due to the entrance of NTV.

Suggested Citation

  • Marletto, Gerardo & Ortolan, Chiara, 2017. "Testing the integration of political discourses into the socio-technical map of urban mobility," Working Papers 17_2, SIET Società Italiana di Economia dei Trasporti e della Logistica.
  • Handle: RePEc:sit:wpaper:17_2
    as

    Download full text from publisher

    File URL: http://sietitalia.org/wpsiet/MarlettoOrtolani_WPSiet2017.pdf
    File Function: First version,
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Smith, Adrian & Raven, Rob, 2012. "What is protective space? Reconsidering niches in transitions to sustainability," Research Policy, Elsevier, vol. 41(6), pages 1025-1036.
    2. G. Marletto, 2013. "Car and the city: Socio-technical pathways to 2030," Working Paper CRENoS 201306, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    3. Marletto, Gerardo, 2011. "Structure, agency and change in the car regime. A review of the literature," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 71-88.
    4. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    5. Dijk, Marc & Orsato, Renato J. & Kemp, René, 2013. "The emergence of an electric mobility trajectory," Energy Policy, Elsevier, vol. 52(C), pages 135-145.
    6. Suurs, Roald A.A. & Hekkert, Marko P. & Kieboom, Sander & Smits, Ruud E.H.M., 2010. "Understanding the formative stage of technological innovation system development: The case of natural gas as an automotive fuel," Energy Policy, Elsevier, vol. 38(1), pages 419-431, January.
    7. Fabien Leurent & Elisabeth Windisch, 2011. "Triggering the development of electric mobility: a review of public policies," Post-Print hal-00652472, HAL.
    8. Frank W. Geels, 2005. "Technological Transitions and System Innovations," Books, Edward Elgar Publishing, number 3576.
    9. FitzRoy, Felix & Smith, Ian, 1998. "Public transport demand in Freiburg: why did patronage double in a decade?," Transport Policy, Elsevier, vol. 5(3), pages 163-173, June.
    10. Smith, Adrian & Stirling, Andy & Berkhout, Frans, 2005. "The governance of sustainable socio-technical transitions," Research Policy, Elsevier, vol. 34(10), pages 1491-1510, December.
    11. Johan Schot & Frank Geels, 2007. "Niches in evolutionary theories of technical change," Journal of Evolutionary Economics, Springer, vol. 17(5), pages 605-622, October.
    12. Walker, William, 2000. "Entrapment in large technology systems: institutional commitment and power relations," Research Policy, Elsevier, vol. 29(7-8), pages 833-846, August.
    13. Alex Haxeltine & Lorraine Whitmarsh & Noam Bergman & Jan Rotmans & Michel Schilperoord & Jonathan Kohler, 2008. "A Conceptual Framework for transition modelling," International Journal of Innovation and Sustainable Development, Inderscience Enterprises Ltd, vol. 3(1/2), pages 93-114.
    14. Marletto, Gerardo, 2014. "Car and the city: Socio-technical transition pathways to 2030," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 164-178.
    15. Mullan, Jonathan & Harries, David & Bräunl, Thomas & Whitely, Stephen, 2012. "The technical, economic and commercial viability of the vehicle-to-grid concept," Energy Policy, Elsevier, vol. 48(C), pages 394-406.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Marletto, 2013. "Car and the city: Socio-technical pathways to 2030," Working Paper CRENoS 201306, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    2. Marletto, Gerardo, 2014. "Car and the city: Socio-technical transition pathways to 2030," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 164-178.
    3. Marletto, Gerardo, 2019. "Who will drive the transition to self-driving? A socio-technical analysis of the future impact of automated vehicles," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 221-234.
    4. C. Sillig & G. Marletto, 2022. "Global influence and national diversity in socio-technical transitions: a sectoral taxonomy," Working Paper CRENoS 202203, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    5. Marletto, Gerardo, 2012. "Which conceptual foundations for environmental policies? An institutional and evolutionary framework of economic change," MPRA Paper 36441, University Library of Munich, Germany.
    6. Konstantinos Karanasios & Paul Parker, 2018. "Explaining the Diffusion of Renewable Electricity Technologies in Canadian Remote Indigenous Communities through the Technological Innovation System Approach," Sustainability, MDPI, vol. 10(11), pages 1-28, October.
    7. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    8. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    9. Gerardo Marletto, 2012. "Which Conceptual Foundations For Environmental Policies? An Institutional And Evolutionary Framework Of Economic Change," Working Papers 0112, CREI Università degli Studi Roma Tre, revised 2012.
    10. Walrave, Bob & Raven, Rob, 2016. "Modelling the dynamics of technological innovation systems," Research Policy, Elsevier, vol. 45(9), pages 1833-1844.
    11. Broto, Vanesa Castán, 2017. "Energy landscapes and urban trajectories towards sustainability," Energy Policy, Elsevier, vol. 108(C), pages 755-764.
    12. Walrave, Bob & Talmar, Madis & Podoynitsyna, Ksenia S. & Romme, A. Georges L. & Verbong, Geert P.J., 2018. "A multi-level perspective on innovation ecosystems for path-breaking innovation," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 103-113.
    13. Weber, K. Matthias & Rohracher, Harald, 2012. "Legitimizing research, technology and innovation policies for transformative change," Research Policy, Elsevier, vol. 41(6), pages 1037-1047.
    14. Pel, Bonno & Raven, Rob & van Est, Rinie, 2020. "Transitions governance with a sense of direction: synchronization challenges in the case of the dutch ‘Driverless Car’ transition," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    15. Geels, Frank W., 2020. "Micro-foundations of the multi-level perspective on socio-technical transitions: Developing a multi-dimensional model of agency through crossovers between social constructivism, evolutionary economics," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    16. Svensson, Oscar & Nikoleris, Alexandra, 2018. "Structure reconsidered: Towards new foundations of explanatory transitions theory," Research Policy, Elsevier, vol. 47(2), pages 462-473.
    17. Hamid El Bilali, 2019. "The Multi-Level Perspective in Research on Sustainability Transitions in Agriculture and Food Systems: A Systematic Review," Agriculture, MDPI, vol. 9(4), pages 1-24, April.
    18. Berggren, Christian & Magnusson, Thomas & Sushandoyo, Dedy, 2015. "Transition pathways revisited: Established firms as multi-level actors in the heavy vehicle industry," Research Policy, Elsevier, vol. 44(5), pages 1017-1028.
    19. Papachristos, George, 2017. "Diversity in technology competition: The link between platforms and sociotechnical transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 291-306.
    20. Karanasios, Konstantinos & Parker, Paul, 2018. "Tracking the transition to renewable electricity in remote indigenous communities in Canada," Energy Policy, Elsevier, vol. 118(C), pages 169-181.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sit:wpaper:17_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Edoardo Marcucci (email available below). General contact details of provider: https://edirc.repec.org/data/siettea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.