My bibliography
Save this item
A nested CES approach to capital-energy substitution
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
- Frieling, Julius & Madlener, Reinhard, 2017. "Fueling the US Economy: Energy as a Production Factor from the Great Depression until Today," FCN Working Papers 2/2017, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Reynès, Frédéric, 2019. "The Cobb–Douglas function as a flexible function," Mathematical Social Sciences, Elsevier, vol. 97(C), pages 11-17.
- Anil Markandya & Suzette Pedroso-Galinato, 2007.
"How substitutable is natural capital?,"
Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 297-312, May.
- Anil Markandya & S. Pedroso, 2005. "How Substitutable is Natural Capital?," Working Papers 2005.88, Fondazione Eni Enrico Mattei.
- Markandya, Anil & Pedroso-Galinato, Suzette, 2006. "How substitutable is natural capital ?," Policy Research Working Paper Series 3803, The World Bank.
- van der Werf, Edwin, 2008.
"Production functions for climate policy modeling: An empirical analysis,"
Energy Economics, Elsevier, vol. 30(6), pages 2964-2979, November.
- Edwin van der Werf, 2007. "Production Functions for Climate Policy Modeling: An Empirical Analysis," Working Papers 2007.47, Fondazione Eni Enrico Mattei.
- Elena Lagomarsino & Karen Turner, 2017. "Is the production function Translog or CES? An empirical illustration using UK data," Working Papers 1713, University of Strathclyde Business School, Department of Economics.
- Frédéric Reynés, 2019. "The Cobb-Douglas function as a flexible function: A new perspective on homogeneous functions through the lens of output elasticities," SciencePo Working papers Main hal-03403639, HAL.
- Lagomarsino, Elena, 2021. "Which nesting structure for the CES? A new selection approach based on input separability," Economic Modelling, Elsevier, vol. 102(C).
- Fan, Jin & Li, Jun & Wu, Yanrui & Wang, Shanyong & Zhao, Dingtao, 2016.
"The effects of allowance price on energy demand under a personal carbon trading scheme,"
Applied Energy, Elsevier, vol. 170(C), pages 242-249.
- Jin Fan & Jun Li & Yanrui Wu & Shanyong Wang & Dingtao Zhao, 2016. "The Effects of Allowance Price on Energy Demand under a Personal Carbon Trading Scheme," Economics Discussion / Working Papers 16-07, The University of Western Australia, Department of Economics.
- André, Francisco J. & Smulders, Sjak, 2014.
"Fueling growth when oil peaks: Directed technological change and the limits to efficiency,"
European Economic Review, Elsevier, vol. 69(C), pages 18-39.
- Francisco J. André & Sjak Smulders, 2012. "Fueling Growth when Oil Peaks: Directed Technological Change and the Limits to Efficiency," CESifo Working Paper Series 3977, CESifo.
- Lecca, Patrizio & Swales, Kim & Turner, Karen, 2011.
"An investigation of issues relating to where energy should enter the production function,"
Economic Modelling, Elsevier, vol. 28(6), pages 2832-2841.
- Lecca, Patrizio & Swales, J Kim & Turner, Karen, 2010. "An investigation of issues relating to where energy should enter the production function," Stirling Economics Discussion Papers 2010-18, University of Stirling, Division of Economics.
- Frédéric Reynés, 2017. "The Cobb-Douglas function as a flexible function," Working Papers hal-03582829, HAL.
- Yazid Dissou & Lilia Karnizova & Qian Sun, 2015.
"Industry-level Econometric Estimates of Energy-Capital-Labor Substitution with a Nested CES Production Function,"
Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 43(1), pages 107-121, March.
- Yazid Dissou & Lilia Karnizova & Qian Sun, 2012. "Industry-level Econometric Estimates of Energy-capital-labour Substitution with a Nested CES Production Function," Working Papers 1214E, University of Ottawa, Department of Economics.
- Opeyemi Bello, Mufutau & Adebola Solarin, Sakiru & Yee Yen, Yuen, 2018. "Interfuel Substitution, Hydroelectricity Consumption and CO2 Emissions Mitigation in Malaysia: Evidence from a Transcendental Logarithm (trans-log) Cost Function Framework," Working Papers 4, Department of Economics, University of Ilorin.
- Frédéric Reynés, 2017. "The Cobb-Douglas function as a flexible function," SciencePo Working papers Main hal-03582829, HAL.
- Kim, Jihyo & Heo, Eunnyeong, 2013. "Asymmetric substitutability between energy and capital: Evidence from the manufacturing sectors in 10 OECD countries," Energy Economics, Elsevier, vol. 40(C), pages 81-89.
- Lin, Boqiang & Ahmad, Izhar, 2016. "Energy substitution effect on transport sector of Pakistan based on trans-log production function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1182-1193.
- Gerhard Glomm & Fabio Méndez, 2009. "Privatization, Deregulation, and Capital Accumulation," Southern Economic Journal, John Wiley & Sons, vol. 75(4), pages 976-995, April.
- Sharimakin, Akinsehinwa, 2019. "Measuring the energy input substitution and output effects of energy price changes and the implications for the environment," Energy Policy, Elsevier, vol. 133(C).
- Michal Antoszewski, 2017.
"Panel estimation of sectoral substitution elasticities for CES production functions,"
EcoMod2017
10160, EcoMod.
- Antoszewski, Michal, 2017. "Panel estimation of sectoral substitution elasticities for CES production functions," MF Working Papers 28, Ministry of Finance in Poland.
- repec:spo:wpmain:info:hdl:2441/62drs526639gbqbrni9v9kvsv5 is not listed on IDEAS
- Kemfert, Claudia & Welsch, Heinz, 2000. "Energy-Capital-Labor Substitution and the Economic Effects of CO2 Abatement: Evidence for Germany," Journal of Policy Modeling, Elsevier, vol. 22(6), pages 641-660, November.
- Boqiang Lin & Kui Liu, 2017. "Energy Substitution Effect on China’s Heavy Industry: Perspectives of a Translog Production Function and Ridge Regression," Sustainability, MDPI, vol. 9(11), pages 1-15, October.
- repec:spo:wpmain:info:hdl:2441/1cpd872l2j8lb968d53pu5f30q is not listed on IDEAS
- Gerassimos Bertsatos & Nicholas Tsounis, 2023. "Assessing the Impact of Trade Barriers on Energy Use in Turbulent Times: Current Conditions and Future Outlook for Greece," Energies, MDPI, vol. 16(15), pages 1-25, August.
- De Lucia, Caterina & Bartlett, Mark, 2014. "Implementing a biofuel economy in the EU: Lessons from the SUSTOIL project and future perspectives for next generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 22-30.
- Jang, Dongsik & Eom, Jiyong & Jae Park, Min & Jeung Rho, Jae, 2016. "Variability of electricity load patterns and its effect on demand response: A critical peak pricing experiment on Korean commercial and industrial customers," Energy Policy, Elsevier, vol. 88(C), pages 11-26.
- Wittmann, Nadine & Yildiz, Özgür, 2013. "A microeconomic analysis of decentralized small scale biomass based CHP plants—The case of Germany," Energy Policy, Elsevier, vol. 63(C), pages 123-129.
- Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008.
"Capital-energy substitution and shifts in factor demand: A meta-analysis,"
Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
- Mark J. Koetse & Henri L.F. de Groot & Raymond J.G.M. Florax, 2006. "Capital-Energy Substitution and Shifts in Factor Demand: A Meta-Analysis," Tinbergen Institute Discussion Papers 06-061/3, Tinbergen Institute.
- Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2015. "Productive energy use and economic growth: Energy, physical and human capital relationships," Energy Economics, Elsevier, vol. 49(C), pages 420-429.
- Antoszewski, Michał, 2019. "Wide-range estimation of various substitution elasticities for CES production functions at the sectoral level," Energy Economics, Elsevier, vol. 83(C), pages 272-289.
- Wu, Shu & Ding, Song, 2021. "Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector," Energy Economics, Elsevier, vol. 99(C).
- repec:hal:spmain:info:hdl:2441/1cpd872l2j8lb968d53pu5f30q is not listed on IDEAS
- Hepburn, Cameron & Teytelboym, Alexander & Cohen, Francois, 2018. "Is Natural Capital Really Substitutable?," INET Oxford Working Papers 2018-12, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
- Sanstad, Alan H. & Roy, Joyashree & Sathaye, Jayant A., 2006. "Estimating energy-augmenting technological change in developing country industries," Energy Economics, Elsevier, vol. 28(5-6), pages 720-729, November.
- Frédéric Reynès, 2017. "The Cobb-Douglas function as a flexible function. Analysing the substitution between capital, labor and energy," Documents de Travail de l'OFCE 2017-12, Observatoire Francais des Conjonctures Economiques (OFCE).
- Mulder, Peter & de Groot, Henri L. F. & Hofkes, Marjan W., 2003. "Explaining slow diffusion of energy-saving technologies; a vintage model with returns to diversity and learning-by-using," Resource and Energy Economics, Elsevier, vol. 25(1), pages 105-126, February.
- He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
- Henningsen, Arne & Henningsen, Geraldine & van der Werf, Edwin, 2019. "Capital-labour-energy substitution in a nested CES framework: A replication and update of Kemfert (1998)," Energy Economics, Elsevier, vol. 82(C), pages 16-25.
- Frédéric Reynés, 2019. "The Cobb-Douglas function as a flexible function: A new perspective on homogeneous functions through the lens of output elasticities," Post-Print hal-03403639, HAL.
- Inoue, Emiko & Taniguchi, Hiroya & Yamada, Ken, 2022.
"Measuring energy-saving technological change: International trends and differences,"
Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
- Emiko Inoue & Hiroya Taniguchi & Ken Yamada, 2020. "Measuring Energy-saving Technological Change: International Trends and Differences," Papers 2008.04639, arXiv.org, revised Jan 2022.
- Vermeulen, Robert & Schets, Edo & Lohuis, Melanie & Kölbl, Barbara & Jansen, David-Jan & Heeringa, Willem, 2021.
"The heat is on: A framework for measuring financial stress under disruptive energy transition scenarios,"
Ecological Economics, Elsevier, vol. 190(C).
- Robert Vermeulen & Edo Schets & Melanie Lohuis & Barbara Kölbl & David-Jan Jansen & Willem Heeringa, 2019. "The Heat is on: a framework for measuring financial stress under disruptive energy transition scenarios," DNB Working Papers 625, Netherlands Central Bank, Research Department.
- G. Mandras & G. Garau, 2015. "Economy-wide rebound effects from an increase in efficiency in the use of energy: the Italian case," Working Paper CRENoS 201520, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Khalid, Waqar & Özdeşer, Hüseyin & Jalil, Abdul, 2021. "An empirical analysis of inter-factor and inter-fuel substitution in the energy sector of Pakistan," Renewable Energy, Elsevier, vol. 177(C), pages 953-966.
- Lin, Boqiang & Atsagli, Philip, 2017. "Inter-fuel substitution possibilities in South Africa: A translog production function approach," Energy, Elsevier, vol. 121(C), pages 822-831.
- Adam Rose & Gbadebo Oladosu & Shu‐Yi Liao, 2007. "Business Interruption Impacts of a Terrorist Attack on the Electric Power System of Los Angeles: Customer Resilience to a Total Blackout," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 513-531, June.
- Sharimakin, Akinsehinwa & Glass, Anthony J. & Saal, David S. & Glass, Karligash, 2018. "Dynamic multilevel modelling of industrial energy demand in Europe," Energy Economics, Elsevier, vol. 74(C), pages 120-130.
- repec:hal:spmain:info:hdl:2441/62drs526639gbqbrni9v9kvsv5 is not listed on IDEAS
- Paul E. Brockway & Matthew K. Heun & João Santos & John R. Barrett, 2017. "Energy-Extended CES Aggregate Production: Current Aspects of Their Specification and Econometric Estimation," Energies, MDPI, vol. 10(2), pages 1-23, February.
- Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
- Lin, Boqiang & Atsagli, Philip, 2017. "Energy consumption, inter-fuel substitution and economic growth in Nigeria," Energy, Elsevier, vol. 120(C), pages 675-685.
- Bello, Mufutau Opeyemi & Ch'ng, Kean Siang, 2024. "Path to clean and sustainable energy from nuclear and renewable sources: Evidence from France," Utilities Policy, Elsevier, vol. 88(C).
- Muhammad Yousaf Raza & Songlin Tang, 2022. "Inter-Fuel Substitution, Technical Change, and Carbon Mitigation Potential in Pakistan: Perspectives of Environmental Analysis," Energies, MDPI, vol. 15(22), pages 1-20, November.
- Lin, Boqiang & Xie, Chunping, 2014. "Energy substitution effect on transport industry of China-based on trans-log production function," Energy, Elsevier, vol. 67(C), pages 213-222.
- Lin, Boqiang & Long, Houyin, 2016. "Input substitution effect in China׳s chemical industry: Evidences and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1617-1625.
- Lin, Boqiang & Atsagli, Philip & Dogah, Kingsley E., 2016. "Ghanaian energy economy: Inter-production factors and energy substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1260-1269.
- Kemfert, Claudia, 1998. "Estimated substitution elasticities of a nested CES production function approach for Germany," Energy Economics, Elsevier, vol. 20(3), pages 249-264, June.
- Malliet, Paul & Reynès, Frédéric G., 2022. "Empirical estimates of the elasticity of substitution of a KLEM production function without nesting constraints: The case of the Variable Output Elasticity-Cobb Douglas," Conference papers 333423, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
- Haqiqi, Iman & Bahalou Horeh, Marziyeh, 2021. "Assessment of COVID-19 impacts on U.S. counties using the immediate impact model of local agricultural production (IMLAP)," Agricultural Systems, Elsevier, vol. 190(C).
- Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
- Su, Xuanming & Zhou, Weisheng & Nakagami, Ken'Ichi & Ren, Hongbo & Mu, Hailin, 2012. "Capital stock-labor-energy substitution and production efficiency study for China," Energy Economics, Elsevier, vol. 34(4), pages 1208-1213.