My bibliography
Save this item
Oil price volatility forecast with mixture memory GARCH
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
- Hasanov, Akram Shavkatovich & Burkhanov, Aktam Usmanovich & Usmonov, Bunyod & Khajimuratov, Nizomjon Shukurullaevich & Khurramova, Madina Mansur qizi, 2024. "The role of sudden variance shifts in predicting volatility in bioenergy crop markets under structural breaks," Energy, Elsevier, vol. 293(C).
- Wen, Jun & Zhao, Xin-Xin & Chang, Chun-Ping, 2021. "The impact of extreme events on energy price risk," Energy Economics, Elsevier, vol. 99(C).
- Ouyang, Zisheng & Lu, Min & Lai, Yongzeng, 2023. "Forecasting stock index return and volatility based on GAVMD- Carbon-BiLSTM: How important is carbon emission trading?," Energy Economics, Elsevier, vol. 128(C).
- Amaro, Raphael & Pinho, Carlos & Madaleno, Mara, 2022. "Forecasting the Value-at-Risk of energy commodities: A comparison of models and alternative distribution functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 65, pages 77-101.
- Chen, Sai & Song, Yan & Ding, Yueting & Zhang, Ming & Nie, Rui, 2021. "Using long short-term memory model to study risk assessment and prediction of China’s oil import from the perspective of resilience theory," Energy, Elsevier, vol. 215(PB).
- Krzysztof Drachal, 2018. "Determining Time-Varying Drivers of Spot Oil Price in a Dynamic Model Averaging Framework," Energies, MDPI, vol. 11(5), pages 1-24, May.
- Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
- Sherzod N. Tashpulatov, 2022. "Modeling Electricity Price Dynamics Using Flexible Distributions," Mathematics, MDPI, vol. 10(10), pages 1-15, May.
- Refk Selmi & Shawkat Hammoudeh & Mark E. Wohar, 2023. "What drives most jumps in global crude oil prices? Fundamental shortage conditions, cartel, geopolitics or the behaviour of financial market participants," The World Economy, Wiley Blackwell, vol. 46(3), pages 598-618, March.
- Jiawen Luo & Tony Klein & Thomas Walther & Qiang Ji, 2024.
"Forecasting realized volatility of crude oil futures prices based on machine learning,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1422-1446, August.
- Luo, Jiawen & Klein, Tony & Walther, Thomas & Ji, Qiang, 2021. "Forecasting Realized Volatility of Crude Oil Futures Prices based on Machine Learning," QBS Working Paper Series 2021/04, Queen's University Belfast, Queen's Business School.
- Luo, Jiawen & Ji, Qiang & Klein, Tony & Todorova, Neda & Zhang, Dayong, 2020. "On realized volatility of crude oil futures markets: Forecasting with exogenous predictors under structural breaks," Energy Economics, Elsevier, vol. 89(C).
- Klein, Tony, 2018. "Trends and Contagion in WTI and Brent Crude Oil Spot and Futures Markets - The Role of OPEC in the last Decade," QBS Working Paper Series 2018/05, Queen's University Belfast, Queen's Business School.
- Luo, Jiawen & Klein, Tony & Ji, Qiang & Hou, Chenghan, 2022. "Forecasting realized volatility of agricultural commodity futures with infinite Hidden Markov HAR models," International Journal of Forecasting, Elsevier, vol. 38(1), pages 51-73.
- Li, Songsong & Zhang, Weiqian & Zhang, Wei, 2023. "Dynamic time-frequency connectedness and risk spillover between geopolitical risks and natural resources," Resources Policy, Elsevier, vol. 82(C).
- O-Chia Chuang & Chenxu Yang, 2022. "Identifying the Determinants of Crude Oil Market Volatility by the Multivariate GARCH-MIDAS Model," Energies, MDPI, vol. 15(8), pages 1-14, April.
- Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
- Paul Bui Quang & Tony Klein & Nam H. Nguyen & Thomas Walther, 2018. "Value-at-Risk for South-East Asian Stock Markets: Stochastic Volatility vs. GARCH," JRFM, MDPI, vol. 11(2), pages 1-20, April.
- Ding, Shusheng & Cui, Tianxiang & Zheng, Dandan & Du, Min, 2021. "The effects of commodity financialization on commodity market volatility," Resources Policy, Elsevier, vol. 73(C).
- Alqahtani, Abdullah & Klein, Tony & Khalid, Ali, 2019. "The impact of oil price uncertainty on GCC stock markets," Resources Policy, Elsevier, vol. 64(C).
- Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
- Phan, Dinh Hoang Bach & Tran, Vuong Thao & Tee, Chwee Ming & Nguyen, Dat Thanh, 2021. "Oil price uncertainty, CSR and institutional quality: A cross-country evidence," Energy Economics, Elsevier, vol. 100(C).
- Marcin Fałdziński & Piotr Fiszeder & Witold Orzeszko, 2020. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression," Energies, MDPI, vol. 14(1), pages 1-18, December.
- Zhongbao Zhou & Qianying Jin & Jian Peng & Helu Xiao & Shijian Wu, 2019. "Further Study of the DEA-Based Framework for Performance Evaluation of Competing Crude Oil Prices’ Volatility Forecasting Models," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
- Zhang, Tingting & Tang, Zhenpeng & Wu, Junchuan & Du, Xiaoxu & Chen, Kaijie, 2021. "Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm," Energy, Elsevier, vol. 229(C).
- Lyu, Yongjian & Qin, Fanshu & Ke, Rui & Wei, Yu & Kong, Mengzhen, 2024. "Does mixed frequency variables help to forecast value at risk in the crude oil market?," Resources Policy, Elsevier, vol. 88(C).
- Lee, Oesook, 2018. "Stationarity and functional central limit theorem for ARCH(∞) models," Economics Letters, Elsevier, vol. 162(C), pages 107-111.
- James Ming Chen & Mobeen Ur Rehman, 2021. "A Pattern New in Every Moment: The Temporal Clustering of Markets for Crude Oil, Refined Fuels, and Other Commodities," Energies, MDPI, vol. 14(19), pages 1-58, September.
- Hardik A. Marfatia & Qiang Ji & Jiawen Luo, 2022. "Forecasting the volatility of agricultural commodity futures: The role of co‐volatility and oil volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 383-404, March.
- Drachal, Krzysztof, 2021. "Forecasting selected energy commodities prices with Bayesian dynamic finite mixtures," Energy Economics, Elsevier, vol. 99(C).
- Lyócsa, Štefan & Todorova, Neda, 2021. "What drives volatility of the U.S. oil and gas firms?," Energy Economics, Elsevier, vol. 100(C).
- Xiafei Li & Dongxin Li & Xuhui Zhang & Guiwu Wei & Lan Bai & Yu Wei, 2021. "Forecasting regular and extreme gold price volatility: The roles of asymmetry, extreme event, and jump," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1501-1523, December.
- Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
- Alizadeh, Amir H. & Huang, Chih-Yueh & Marsh, Ian W., 2021. "Modelling the volatility of TOCOM energy futures: A regime switching realised volatility approach," Energy Economics, Elsevier, vol. 93(C).
- Bissoondoyal-Bheenick, Emawtee & Brooks, Robert & Do, Hung Xuan & Smyth, Russell, 2020. "Exploiting the heteroskedasticity in measurement error to improve volatility predictions in oil and biofuel feedstock markets," Energy Economics, Elsevier, vol. 86(C).
- Xu Gong & Boqiang Lin, 2021. "Effects of structural changes on the prediction of downside volatility in futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1124-1153, July.
- El Montasser, Ghassen & Malek Belhoula, Mohamed & Charfeddine, Lanouar, 2023. "Co-explosivity versus leading effects: Evidence from crude oil and agricultural commodities," Resources Policy, Elsevier, vol. 81(C).
- Alqahtani, Abdullah & Selmi, Refk & Hongbing, Ouyang, 2021. "The financial impacts of jump processes in the crude oil price: Evidence from G20 countries in the pre- and post-COVID-19," Resources Policy, Elsevier, vol. 72(C).
- Yong Jiang & Chao-Qun Ma & Xiao-Guang Yang & Yi-Shuai Ren, 2018. "Time-Varying Volatility Feedback of Energy Prices: Evidence from Crude Oil, Petroleum Products, and Natural Gas Using a TVP-SVM Model," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
- Chang, Lei & Baloch, Zulfiqar Ali & Saydaliev, Hayot Berk & Hyder, Mansoor & Dilanchiev, Azer, 2022. "Testing oil price volatility during Covid-19: Global economic impact," Resources Policy, Elsevier, vol. 78(C).
- Li, Yuze & Jiang, Shangrong & Li, Xuerong & Wang, Shouyang, 2021. "The role of news sentiment in oil futures returns and volatility forecasting: Data-decomposition based deep learning approach," Energy Economics, Elsevier, vol. 95(C).
- Klein, Tony, 2018. "Trends and contagion in WTI and Brent crude oil spot and futures markets - The role of OPEC in the last decade," Energy Economics, Elsevier, vol. 75(C), pages 636-646.
- Jiang, He & Hu, Weiqiang & Xiao, Ling & Dong, Yao, 2022. "A decomposition ensemble based deep learning approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 78(C).
- Miroslava Zavadska & Lucía Morales & Joseph Coughlan, 2018. "The Lead–Lag Relationship between Oil Futures and Spot Prices—A Literature Review," IJFS, MDPI, vol. 6(4), pages 1-22, October.
- Yushu Li & Hyunjoo Kim Karlsson, 2023. "Investigating the Asymmetric Behavior of Oil Price Volatility Using Support Vector Regression," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1765-1790, April.
- Panagiotis Delis & Stavros Degiannakis & George Filis, 2022. "What matters when developing oil price volatility forecasting frameworks?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 361-382, March.
- Guo, Xiaozhu & Huang, Yisu & Liang, Chao & Umar, Muhammad, 2022. "Forecasting volatility of EUA futures: New evidence," Energy Economics, Elsevier, vol. 110(C).
- Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
- Wu, Xi & Wang, Yudong & Tong, Xinle, 2021. "Cash holdings and oil price uncertainty exposures," Energy Economics, Elsevier, vol. 99(C).
- Sherzod N. Tashpulatov, 2021. "The Impact of Regulatory Reforms on Demand Weighted Average Prices," Mathematics, MDPI, vol. 9(10), pages 1-15, May.
- Emrah İ. Çevik & Erdal Atukeren & Turhan Korkmaz, 2018. "Oil Prices and Global Stock Markets: A Time-Varying Causality-In-Mean and Causality-in-Variance Analysis," Energies, MDPI, vol. 11(10), pages 1-22, October.
- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2020. "Copula stochastic volatility in oil returns: Approximate Bayesian computation with volatility prediction," Energy Economics, Elsevier, vol. 92(C).
- Hasanov, Akram Shavkatovich & Poon, Wai Ching & Al-Freedi, Ajab & Heng, Zin Yau, 2018. "Forecasting volatility in the biofuel feedstock markets in the presence of structural breaks: A comparison of alternative distribution functions," Energy Economics, Elsevier, vol. 70(C), pages 307-333.
- Qiu Lianshi, 2024. "The Relationship Between Stock Performance and Money Supply Based on VAR Model in the Context of E-commerce," Economics - The Open-Access, Open-Assessment Journal, De Gruyter, vol. 18(1), pages 1-12.