IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v128y2023ics0140988323006321.html
   My bibliography  Save this article

Forecasting stock index return and volatility based on GAVMD- Carbon-BiLSTM: How important is carbon emission trading?

Author

Listed:
  • Ouyang, Zisheng
  • Lu, Min
  • Lai, Yongzeng

Abstract

This paper proposes a new forecast method of stock price return and volatility by GAVMD-Carbon-BiLSTM. First, based on the data from eight carbon markets in China, the logarithmic rate of return of carbon emission rights price is constructed. Second, the TVP-VAR model is used to investigate the impact effect of carbon emission rights trading, stock price return, and volatility. It is used as a predictor of return and volatility rationality. Third, the genetic algorithm is used to optimize the parameters of the variational mode decomposition. Fourth, the return and volatility of stock price are decomposed into multiple intrinsic modes, effectively reducing the data’s complexity. Finally, GAVMD is combined with BiLSTM, and the logarithmic return of carbon emission trading price is used as input to predict the stock price return and volatility. The results show that carbon emissions trading impacts the rate of return and volatility at different lead times and time points. Therefore, using it to predict stock price return and volatility can improve prediction accuracy. At the same time, combining GAVMD with BiLSTM, the prediction performance of carbon emission trading price logarithmic return rate as input is much better than other machine learning models.

Suggested Citation

  • Ouyang, Zisheng & Lu, Min & Lai, Yongzeng, 2023. "Forecasting stock index return and volatility based on GAVMD- Carbon-BiLSTM: How important is carbon emission trading?," Energy Economics, Elsevier, vol. 128(C).
  • Handle: RePEc:eee:eneeco:v:128:y:2023:i:c:s0140988323006321
    DOI: 10.1016/j.eneco.2023.107134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323006321
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.107134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanif, Waqas & Arreola Hernandez, Jose & Mensi, Walid & Kang, Sang Hoon & Uddin, Gazi Salah & Yoon, Seong-Min, 2021. "Nonlinear dependence and connectedness between clean/renewable energy sector equity and European emission allowance prices," Energy Economics, Elsevier, vol. 101(C).
    2. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    3. Zhu, Bangzhu & Ye, Shunxin & Han, Dong & Wang, Ping & He, Kaijian & Wei, Yi-Ming & Xie, Rui, 2019. "A multiscale analysis for carbon price drivers," Energy Economics, Elsevier, vol. 78(C), pages 202-216.
    4. Balcılar, Mehmet & Demirer, Rıza & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2016. "Risk spillovers across the energy and carbon markets and hedging strategies for carbon risk," Energy Economics, Elsevier, vol. 54(C), pages 159-172.
    5. Xue Gao & Yixin Ren & Muhammad Umar, 2022. "To what extent does COVID-19 drive stock market volatility? A comparison between the U.S. and China," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 35(1), pages 1686-1706, December.
    6. Xingrui Jiao & Yuping Song & Yang Kong & Xiaolong Tang, 2022. "Volatility forecasting for crude oil based on text information and deep learning PSO‐LSTM model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 933-944, August.
    7. Jouchi Nakajima, 2011. "Time-Varying Parameter VAR Model with Stochastic Volatility: An Overview of Methodology and Empirical Applications," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 29, pages 107-142, November.
    8. Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012. "A comprehensive look at financial volatility prediction by economic variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 956-977, September.
    9. Ouyang, Zi-sheng & Yang, Xi-te & Lai, Yongzeng, 2021. "Systemic financial risk early warning of financial market in China using Attention-LSTM model," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    10. Xu, Yingying, 2021. "Risk spillover from energy market uncertainties to the Chinese carbon market," Pacific-Basin Finance Journal, Elsevier, vol. 67(C).
    11. Yang, Cai & Niu, Zibo & Gao, Wang, 2022. "The time-varying effects of trade policy uncertainty and geopolitical risks shocks on the commodity market prices: Evidence from the TVP-VAR-SV approach," Resources Policy, Elsevier, vol. 76(C).
    12. Frank Venmans & Jane Ellis & Daniel Nachtigall, 2020. "Carbon pricing and competitiveness: are they at odds?," Climate Policy, Taylor & Francis Journals, vol. 20(9), pages 1070-1091, October.
    13. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    14. Chang, Kai & Ye, Zhifang & Wang, Weihong, 2019. "Volatility spillover effect and dynamic correlation between regional emissions allowances and fossil energy markets: New evidence from China’s emissions trading scheme pilots," Energy, Elsevier, vol. 185(C), pages 1314-1324.
    15. Dima Alberg & Haim Shalit & Rami Yosef, 2008. "Estimating stock market volatility using asymmetric GARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 18(15), pages 1201-1208.
    16. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    17. Eachempati, Prajwal & Srivastava, Praveen Ranjan & Kumar, Ajay & Tan, Kim Hua & Gupta, Shivam, 2021. "Validating the impact of accounting disclosures on stock market: A deep neural network approach," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    18. Ouyang, Zisheng & Zhou, Xuewei, 2023. "Multilayer networks in the frequency domain: Measuring extreme risk connectedness of Chinese financial institutions," Research in International Business and Finance, Elsevier, vol. 65(C).
    19. Fang, Yi & Jing, Zhongbo & Shi, Yukun & Zhao, Yang, 2021. "Financial spillovers and spillbacks: New evidence from China and G7 countries," Economic Modelling, Elsevier, vol. 94(C), pages 184-200.
    20. Li, Yuze & Jiang, Shangrong & Li, Xuerong & Wang, Shouyang, 2021. "The role of news sentiment in oil futures returns and volatility forecasting: Data-decomposition based deep learning approach," Energy Economics, Elsevier, vol. 95(C).
    21. Bolin Lei & Boyu Zhang & Yuping Song, 2021. "Volatility Forecasting for High-Frequency Financial Data Based on Web Search Index and Deep Learning Model," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
    22. Sun, Xiaotian & Fang, Wei & Gao, Xiangyun & An, Haizhong & Liu, Siyao & Wu, Tao, 2022. "Complex causalities between the carbon market and the stock markets for energy intensive industries in China," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 404-417.
    23. Klein, Tony & Walther, Thomas, 2016. "Oil price volatility forecast with mixture memory GARCH," Energy Economics, Elsevier, vol. 58(C), pages 46-58.
    24. Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouyang, Zisheng & Lu, Min & Ouyang, Zhongzhe & Zhou, Xuewei & Wang, Ren, 2024. "A novel integrated method for improving the forecasting accuracy of crude oil: ESMD-CFastICA-BiLSTM-Attention," Energy Economics, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jianing & Man, Yuanyuan & Dong, Xiuliang, 2023. "Tail dependence and risk spillover effects between China's carbon market and energy markets," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 553-567.
    2. Hanif, Waqas & Arreola Hernandez, Jose & Mensi, Walid & Kang, Sang Hoon & Uddin, Gazi Salah & Yoon, Seong-Min, 2021. "Nonlinear dependence and connectedness between clean/renewable energy sector equity and European emission allowance prices," Energy Economics, Elsevier, vol. 101(C).
    3. Zhou, Yuqin & Wu, Shan & Zhang, Zeyi, 2022. "Multidimensional risk spillovers among carbon, energy and nonferrous metals markets: Evidence from the quantile VAR network," Energy Economics, Elsevier, vol. 114(C).
    4. Yang, Xite & Zhang, Qin & Liu, Haiyue & Liu, Zihan & Tao, Qiufan & Lai, Yongzeng & Huang, Linya, 2024. "Economic policy uncertainty, macroeconomic shocks, and systemic risk: Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    5. Yang, Ming-Yuan & Chen, Zhanghangjian & Liang, Zongzheng & Li, Sai-Ping, 2023. "Dynamic and asymmetric connectedness in the global “Carbon-Energy-Stock” system under shocks from exogenous events," Journal of Commodity Markets, Elsevier, vol. 32(C).
    6. Adekoya, Oluwasegun B. & Oliyide, Johnson A. & Noman, Ambreen, 2021. "The volatility connectedness of the EU carbon market with commodity and financial markets in time- and frequency-domain: The role of the U.S. economic policy uncertainty," Resources Policy, Elsevier, vol. 74(C).
    7. Tan, Jinghua & Li, Zhixi & Zhang, Chuanhui & Shi, Long & Jiang, Yuansheng, 2024. "A multiscale time-series decomposition learning for crude oil price forecasting," Energy Economics, Elsevier, vol. 136(C).
    8. Meng, Bin & Chen, Shuiyang & Haralambides, Hercules & Kuang, Haibo & Fan, Lidong, 2023. "Information spillovers between carbon emissions trading prices and shipping markets: A time-frequency analysis," Energy Economics, Elsevier, vol. 120(C).
    9. Li, Zheng-Zheng & Li, Yameng & Huang, Chia-Yun & Peculea, Adelina Dumitrescu, 2023. "Volatility spillover across Chinese carbon markets: Evidence from quantile connectedness method," Energy Economics, Elsevier, vol. 119(C).
    10. Jiang, Wei & Chen, Yunfei, 2022. "The time-frequency connectedness among carbon, traditional/new energy and material markets of China in pre- and post-COVID-19 outbreak periods," Energy, Elsevier, vol. 246(C).
    11. Demiralay, Sercan & Gencer, Hatice Gaye & Bayraci, Selcuk, 2022. "Carbon credit futures as an emerging asset: Hedging, diversification and downside risks," Energy Economics, Elsevier, vol. 113(C).
    12. Li, Houjian & Li, Qingman & Huang, Xinya & Guo, Lili, 2023. "Do green bonds and economic policy uncertainty matter for carbon price? New insights from a TVP-VAR framework," International Review of Financial Analysis, Elsevier, vol. 86(C).
    13. Su, Chi-Wei & Pang, Li-Dong & Qin, Meng & Lobonţ, Oana-Ramona & Umar, Muhammad, 2023. "The spillover effects among fossil fuel, renewables and carbon markets: Evidence under the dual dilemma of climate change and energy crises," Energy, Elsevier, vol. 274(C).
    14. Zhao, Jing, 2023. "Time-varying impact of geopolitical risk on natural resources prices: Evidence from the hybrid TVP-VAR model with large system," Resources Policy, Elsevier, vol. 82(C).
    15. Ouyang, Zisheng & Lu, Min & Ouyang, Zhongzhe & Zhou, Xuewei & Wang, Ren, 2024. "A novel integrated method for improving the forecasting accuracy of crude oil: ESMD-CFastICA-BiLSTM-Attention," Energy Economics, Elsevier, vol. 138(C).
    16. Wu, Ruirui & Qin, Zhongfeng, 2024. "Asymmetric volatility spillovers among new energy, ESG, green bond and carbon markets," Energy, Elsevier, vol. 292(C).
    17. El Khoury, Rim & Alshater, Muneer M. & Li, Yanshuang & Xiong, Xiong, 2024. "Quantile time-frequency connectedness among G7 stock markets and clean energy markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 93(C), pages 71-90.
    18. Dong, Qingli & Zhao, Yanzhi & Ma, Xiaojun & Zhou, Yanan, 2024. "Risk spillover between carbon markets and stock markets from a progressive perspective: Measurements, spillover networks, and driving factors," Energy Economics, Elsevier, vol. 129(C).
    19. Ke, Rui & Shen, Anni & Yin, Man & Tan, Changchun, 2024. "The cross-sector risk contagion among Chinese financial institutions: Evidence from the extreme volatility spillover perspective," Finance Research Letters, Elsevier, vol. 63(C).
    20. Wu, Ruirui & Qin, Zhongfeng & Liu, Bing-Yue, 2022. "A systemic analysis of dynamic frequency spillovers among carbon emissions trading (CET), fossil energy and sectoral stock markets: Evidence from China," Energy, Elsevier, vol. 254(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:128:y:2023:i:c:s0140988323006321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.