IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v16y1994i1p22-26.html
   My bibliography  Save this item

Capital-energy substitution and the multi-level CES production function

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. K. Narayanan & Santosh Kumar Sahu, 2010. "Labour and Energy Intensity: A Study of Pulp & Paper Industries in India," Working Papers id:3101, eSocialSciences.
  2. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
  3. Emanuele Massetti & Lea Nicita, 2010. "The Optimal Climate Policy Portfolio when Knowledge Spills across Sectors," CESifo Working Paper Series 2988, CESifo.
  4. CARRARO Carlo & MASSETTI Emanuele & NICITA Lea, 2010. "How Does Climate Policy Affect Technical Change? ?An Analysis of the Direction and Pace of Technical Progress in a Climate-Economy Model (Fondazione Eni Enrico Mattei)," ESRI Discussion paper series 229, Economic and Social Research Institute (ESRI).
  5. Fan, Fei & Dai, Shangze & Yang, Bo & Ke, Haiqian, 2023. "Urban density, directed technological change, and carbon intensity: An empirical study based on Chinese cities," Technology in Society, Elsevier, vol. 72(C).
  6. Anil Markandya & Suzette Pedroso-Galinato, 2007. "How substitutable is natural capital?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 297-312, May.
  7. Medina, J. & Vega-Cervera, J. A., 2001. "Energy and the non-energy inputs substitution: evidence for Italy, Portugal and Spain," Applied Energy, Elsevier, vol. 68(2), pages 203-214, February.
  8. van der Werf, Edwin, 2008. "Production functions for climate policy modeling: An empirical analysis," Energy Economics, Elsevier, vol. 30(6), pages 2964-2979, November.
  9. Wan-Jiun Chen & Chien-Ho Wang, 2020. "A General Cross-Country Panel Analysis for the Effects of Capitals and Energy, on Economic Growth and Carbon Dioxide Emissions," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
  10. Elena Lagomarsino & Karen Turner, 2017. "Is the production function Translog or CES? An empirical illustration using UK data," Working Papers 1713, University of Strathclyde Business School, Department of Economics.
  11. Nicholas Lee & Hsiang-Jane Su & Ming-Chin Lin, 2018. "Electricity Consumption and Green Mortgage: New Insights into the Threshold Cointegration Relationship," International Journal of Energy Economics and Policy, Econjournals, vol. 8(2), pages 39-46.
  12. Lecca, Patrizio & Swales, Kim & Turner, Karen, 2011. "An investigation of issues relating to where energy should enter the production function," Economic Modelling, Elsevier, vol. 28(6), pages 2832-2841.
  13. Yazid Dissou & Lilia Karnizova & Qian Sun, 2015. "Industry-level Econometric Estimates of Energy-Capital-Labor Substitution with a Nested CES Production Function," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 43(1), pages 107-121, March.
  14. Valeria Costantini & Francesco Crespi & Elena Paglialunga, 2019. "Capital–energy substitutability in manufacturing sectors: methodological and policy implications," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(2), pages 157-182, June.
  15. Soest, D.P. van & Kuper, G.H. & Jacobs, J., 2000. "Threshold effects of energy price changes," Research Report 00C31, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
  16. Kim, Jihyo & Heo, Eunnyeong, 2013. "Asymmetric substitutability between energy and capital: Evidence from the manufacturing sectors in 10 OECD countries," Energy Economics, Elsevier, vol. 40(C), pages 81-89.
  17. Kuper, Gerard H. & Soest, Daan P. van, 1999. "Asymmetric adaptations to energy price changes," CCSO Working Papers 199913, University of Groningen, CCSO Centre for Economic Research.
  18. Kemfert, Claudia & Welsch, Heinz, 2000. "Energy-Capital-Labor Substitution and the Economic Effects of CO2 Abatement: Evidence for Germany," Journal of Policy Modeling, Elsevier, vol. 22(6), pages 641-660, November.
  19. Burniaux, Jean-March & Truong, Truong P., 2002. "Gtap-E: An Energy-Environmental Version Of The Gtap Model," Technical Papers 28705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  20. Allan, Grant & Hanley, Nick & McGregor, Peter & Swales, Kim & Turner, Karen, 2007. "The impact of increased efficiency in the industrial use of energy: A computable general equilibrium analysis for the United Kingdom," Energy Economics, Elsevier, vol. 29(4), pages 779-798, July.
  21. Delin, Huang, 2012. "Policy Implications and Mitigation Potential in China Agricultural Greenhouse Gas Emission," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 124848, International Association of Agricultural Economists.
  22. Boqiang Lin & Kui Liu, 2017. "Energy Substitution Effect on China’s Heavy Industry: Perspectives of a Translog Production Function and Ridge Regression," Sustainability, MDPI, vol. 9(11), pages 1-15, October.
  23. Kumbaroglu, Gurkan S., 1997. "A model for long-term global air quality prediction and development of efficient control strategies in Turkey," European Journal of Operational Research, Elsevier, vol. 102(2), pages 380-392, October.
  24. Li, Wei & Lu, Can & Ding, Yi & Zhang, Yan-Wu, 2017. "The impacts of policy mix for resolving overcapacity in heavy chemical industry and operating national carbon emission trading market in China," Applied Energy, Elsevier, vol. 204(C), pages 509-524.
  25. Mikael Linden, Matti Makela, and Jussi Uusivuori, 2013. "Fuel Input Substitution under Tradable Carbon Permits System: Evidence from Finnish Energy Plants 2005-2008," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
  26. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
  27. Vega-Cervera, J.A. & Medina, J., 2000. "Energy as a productive input: The underlying technology for Portugal and Spain," Energy, Elsevier, vol. 25(8), pages 757-775.
  28. Liu, Kui & Bai, Hongkun & Yin, Shuo & Lin, Boqiang, 2018. "Factor substitution and decomposition of carbon intensity in China's heavy industry," Energy, Elsevier, vol. 145(C), pages 582-591.
  29. repec:dgr:rugccs:199913 is not listed on IDEAS
  30. repec:dgr:rugccs:200007 is not listed on IDEAS
  31. Hepburn, Cameron & Teytelboym, Alexander & Cohen, Francois, 2018. "Is Natural Capital Really Substitutable?," INET Oxford Working Papers 2018-12, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
  32. Thompson, Henry, 2006. "The applied theory of energy substitution in production," Energy Economics, Elsevier, vol. 28(4), pages 410-425, July.
  33. Kuper, Gerard H. & van Soest, Daan P., 2003. "Path-dependency and input substitution: implications for energy policy modelling," Energy Economics, Elsevier, vol. 25(4), pages 397-407, July.
  34. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
  35. Henningsen, Arne & Henningsen, Geraldine & van der Werf, Edwin, 2019. "Capital-labour-energy substitution in a nested CES framework: A replication and update of Kemfert (1998)," Energy Economics, Elsevier, vol. 82(C), pages 16-25.
  36. Syed, Arif, 2011. "Energy use reduction and input productivity growth in Australian industries," 2011 Conference (55th), February 8-11, 2011, Melbourne, Australia 100715, Australian Agricultural and Resource Economics Society.
  37. Inoue, Emiko & Taniguchi, Hiroya & Yamada, Ken, 2022. "Measuring energy-saving technological change: International trends and differences," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
  38. repec:dgr:rugsom:00c31 is not listed on IDEAS
  39. Wang, Ailun & Lin, Boqiang, 2020. "Structural optimization and carbon taxation in China's commercial sector," Energy Policy, Elsevier, vol. 140(C).
  40. Amann, Juergen & Cantore, Nicola & Calí, Massimiliano & Todorov, Valentin & Cheng, Charles Fang Chin, 2021. "Switching it up: The effect of energy price reforms in Oman," World Development, Elsevier, vol. 142(C).
  41. repec:dgr:rugsom:99c21 is not listed on IDEAS
  42. G. Mandras & G. Garau, 2015. "Economy-wide rebound effects from an increase in efficiency in the use of energy: the Italian case," Working Paper CRENoS 201520, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
  43. Rentschler, Jun & Kornejew, Martin & Bazilian, Morgan, 2017. "Fossil fuel subsidy reforms and their impacts on firms," Energy Policy, Elsevier, vol. 108(C), pages 617-623.
  44. Işıl Şirin SELÇUK & Altuğ Murat KÖKTAŞ, 2016. "Energy Market Regulations and Productivity: An Examination on OECD Countries between the Years of 1975-2007," Sosyoekonomi Journal, Sosyoekonomi Society, issue 24(27).
  45. Santosh Kumar Sahu & Krishnan Narayanan, 2011. "Total Factor Productivity and Energy Intensity in Indian Manufacturing: A Cross-Sectional Study," International Journal of Energy Economics and Policy, Econjournals, vol. 1(2), pages 47-58, September.
  46. Valeria Costantini & Elena Paglialunga, 2014. "Elasticity of substitution in capital-energy relationships: how central is a sector-based panel estimation approach?," SEEDS Working Papers 1314, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised May 2014.
  47. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
  48. Burney, Nadeem A. & Al-Matrouk, Faisal T., 1996. "Energy conservation in electricity generation: A case study of the electricity and water industry in Kuwait," Energy Economics, Elsevier, vol. 18(1-2), pages 69-79, April.
  49. Kemfert, Claudia, 1998. "Estimated substitution elasticities of a nested CES production function approach for Germany," Energy Economics, Elsevier, vol. 20(3), pages 249-264, June.
  50. Malliet, Paul & Reynès, Frédéric G., 2022. "Empirical estimates of the elasticity of substitution of a KLEM production function without nesting constraints: The case of the Variable Output Elasticity-Cobb Douglas," Conference papers 333423, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  51. Su, Xuanming & Zhou, Weisheng & Nakagami, Ken'Ichi & Ren, Hongbo & Mu, Hailin, 2012. "Capital stock-labor-energy substitution and production efficiency study for China," Energy Economics, Elsevier, vol. 34(4), pages 1208-1213.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.