IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v216y2012i2p301-311.html
   My bibliography  Save this item

Alternative supply chain production–sales policies for new product diffusion: An agent-based modeling and simulation approach

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ju, Yong Han & Sohn, So Young, 2014. "Updating a credit-scoring model based on new attributes without realization of actual data," European Journal of Operational Research, Elsevier, vol. 234(1), pages 119-126.
  2. Mohammad G Nejad & Sertan Kabadayi, 2016. "Optimal introductory pricing for new financial services," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 21(1), pages 34-50, March.
  3. Bigdellou, Saeide & Aslani, Shirin & Modarres, Mohammad, 2022. "Optimal promotion planning for a product launch in the presence of word-of-mouth," Journal of Retailing and Consumer Services, Elsevier, vol. 64(C).
  4. Emanuele Borgonovo & Marco Pangallo & Jan Rivkin & Leonardo Rizzo & Nicolaj Siggelkow, 2022. "Sensitivity analysis of agent-based models: a new protocol," Computational and Mathematical Organization Theory, Springer, vol. 28(1), pages 52-94, March.
  5. Shi, Yingying & Wei, Zixiang & Shahbaz, Muhammad & Zeng, Yongchao, 2021. "Exploring the dynamics of low-carbon technology diffusion among enterprises: An evolutionary game model on a two-level heterogeneous social network," Energy Economics, Elsevier, vol. 101(C).
  6. Negahban, Ashkan & Dehghanimohammadabadi, Mohammad, 2018. "Optimizing the supply chain configuration and production-sales policies for new products over multiple planning horizons," International Journal of Production Economics, Elsevier, vol. 196(C), pages 150-162.
  7. Ashkan Negahban & Jeffrey S. Smith, 2018. "A joint analysis of production and seeding strategies for new products: an agent-based simulation approach," Annals of Operations Research, Springer, vol. 268(1), pages 41-62, September.
  8. Luisanna Cocco & Michele Marchesi, 2016. "Modeling and Simulation of the Economics of Mining in the Bitcoin Market," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-31, October.
  9. Franco, L. Alberto & Hämäläinen, Raimo P., 2016. "Behavioural operational research: Returning to the roots of the OR profession," European Journal of Operational Research, Elsevier, vol. 249(3), pages 791-795.
  10. Sauvageau, Gabriel & Frayret, Jean-Marc, 2015. "Waste paper procurement optimization: An agent-based simulation approach," European Journal of Operational Research, Elsevier, vol. 242(3), pages 987-998.
  11. Negahban, Ashkan & Smith, Jeffrey S., 2018. "Optimal production-sales policies and entry time for successive generations of new products," International Journal of Production Economics, Elsevier, vol. 199(C), pages 220-232.
  12. Kucukkoc, Ibrahim & Zhang, David Z., 2014. "Mathematical model and agent based solution approach for the simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines," International Journal of Production Economics, Elsevier, vol. 158(C), pages 314-333.
  13. Nejad, Mohammad G. & Amini, Mehdi & Babakus, Emin, 2015. "Success Factors in Product Seeding: The Role of Homophily," Journal of Retailing, Elsevier, vol. 91(1), pages 68-88.
  14. Lorena Reyes-Rubiano & Ingrid Y. Amaya & David Medina Mayorga & Andrés Muñoz-Villamizar & Elyn Solano-Charris, 2024. "How does technological innovation impact the service time and the attraction of new customers in the financial sector? Evidence from an emerging economy," Operations Management Research, Springer, vol. 17(2), pages 596-611, June.
  15. Ding, Haixin & Xie, Li, 2023. "Simulating rumor spreading and rebuttal strategy with rebuttal forgetting: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
  16. Simpson, Jesse R. & Mishra, Sabyasachee & Talebian, Ahmadreza & Golias, Mihalis M., 2019. "An estimation of the future adoption rate of autonomous trucks by freight organizations," Research in Transportation Economics, Elsevier, vol. 76(C).
  17. Zhang, Mingyang & Zhang, Juliang & Cheng, T.C.E. & Hua, Guowei, 2018. "Why and how do branders sell new products on flash sale platforms?," European Journal of Operational Research, Elsevier, vol. 270(1), pages 337-351.
  18. Nejad, Mohammad G. & Amini, Mehdi, 2024. "Designing profitable seeding Programs: The effects of social network properties and consumer homophily," Journal of Business Research, Elsevier, vol. 173(C).
  19. Ponta, Linda & Puliga, Gloria & Lazzarotti, Valentina & Manzini, Raffaella & Cincotti, Silvano, 2023. "To copatent or not to copatent: An agent-based model for firms facing this dilemma," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1349-1363.
  20. Busby, J.S., 2019. "The co-evolution of competition and parasitism in the resource-based view: A risk model of product counterfeiting," European Journal of Operational Research, Elsevier, vol. 276(1), pages 300-313.
  21. Guo, Xuezhen, 2014. "A novel Bass-type model for product life cycle quantification using aggregate market data," International Journal of Production Economics, Elsevier, vol. 158(C), pages 208-216.
  22. Busby, J.S. & Onggo, B.S.S. & Liu, Y., 2016. "Agent-based computational modelling of social risk responses," European Journal of Operational Research, Elsevier, vol. 251(3), pages 1029-1042.
  23. Meng, Qingfeng & Li, Zhen & Liu, Huimin & Chen, Jingxian, 2017. "Agent-based simulation of competitive performance for supply chains based on combined contracts," International Journal of Production Economics, Elsevier, vol. 193(C), pages 663-676.
  24. Karsten Kieckhäfer & Thomas Volling & Thomas Stefan Spengler, 2014. "A Hybrid Simulation Approach for Estimating the Market Share Evolution of Electric Vehicles," Transportation Science, INFORMS, vol. 48(4), pages 651-670, November.
  25. Lixin Zhou & Jie Lin & Yanfeng Li & Zhenyu Zhang, 2020. "Innovation Diffusion of Mobile Applications in Social Networks: A Multi-Agent System," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
  26. Malacina, Iryna & Teplov, Roman, 2022. "Supply chain innovation research: A bibliometric network analysis and literature review," International Journal of Production Economics, Elsevier, vol. 251(C).
  27. Martin Zsifkovits & Markus Günther, 2015. "Simulating resistances in innovation diffusion over multiple generations: an agent-based approach for fuel-cell vehicles," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(2), pages 501-522, June.
  28. A. Negahban & J.S. Smith, 2016. "The effect of supply and demand uncertainties on the optimal production and sales plans for new products," International Journal of Production Research, Taylor & Francis Journals, vol. 54(13), pages 3852-3869, July.
  29. Nejad, Mohammad G. & Amini, Mehdi & Sherrell, Daniel L., 2016. "The profit impact of revenue heterogeneity and assortativity in the presence of negative word-of-mouth," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 656-673.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.