IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v158y2014icp314-333.html
   My bibliography  Save this article

Mathematical model and agent based solution approach for the simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines

Author

Listed:
  • Kucukkoc, Ibrahim
  • Zhang, David Z.

Abstract

One of the key factors of a successfully implemented mixed-model line system is considering model sequencing problem as well as the line balancing problem. In the literature, there are many studies, which consider these two tightly interrelated problems individually. However, we integrate the model sequencing problem in the line balancing procedure to obtain a more efficient solution for the problem of Simultaneous Balancing and Sequencing of Mixed-Model Parallel Two-Sided Assembly Lines. A mathematical model is developed to present the problem and a novel agent based ant colony optimisation approach is proposed as the solution method. Different agents interact with each other to find a near optimal solution for the problem. Each ant selects a random behaviour from a predefined list of heuristics and builds a solution using this behaviour as a local search rule along with the pheromone value. Different cycle times are allowed for different two-sided lines located in parallel to each other and this yields a complex problem where different production cycles need to be considered to build a feasible solution. The performance of the proposed approach is tested through a set of test cases. Experimental results indicate that considering model sequencing problem with the line balancing problem together helps minimise line length and total number of required workstations. Also, it is found that the proposed approach outperforms other three heuristics tested.

Suggested Citation

  • Kucukkoc, Ibrahim & Zhang, David Z., 2014. "Mathematical model and agent based solution approach for the simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines," International Journal of Production Economics, Elsevier, vol. 158(C), pages 314-333.
  • Handle: RePEc:eee:proeco:v:158:y:2014:i:c:p:314-333
    DOI: 10.1016/j.ijpe.2014.08.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527314002680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2014.08.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Candace Arai Yano & Ram Rachamadugu, 1991. "Sequencing to Minimize Work Overload in Assembly Lines with Product Options," Management Science, INFORMS, vol. 37(5), pages 572-586, May.
    2. F. Brian Talbot & James H. Patterson, 1984. "An Integer Programming Algorithm with Network Cuts for Solving the Assembly Line Balancing Problem," Management Science, INFORMS, vol. 30(1), pages 85-99, January.
    3. Nick T. Thomopoulos, 1967. "Line Balancing-Sequencing for Mixed-Model Assembly," Management Science, INFORMS, vol. 14(2), pages 59-75, October.
    4. Anosike, A.I. & Zhang, D.Z., 2009. "An agent-based approach for integrating manufacturing operations," International Journal of Production Economics, Elsevier, vol. 121(2), pages 333-352, October.
    5. Gokcen, Hadi & Erel, Erdal, 1997. "A goal programming approach to mixed-model assembly line balancing problem," International Journal of Production Economics, Elsevier, vol. 48(2), pages 177-185, January.
    6. Karabati, Selcuk & Sayin, Serpil, 2003. "Assembly line balancing in a mixed-model sequencing environment with synchronous transfers," European Journal of Operational Research, Elsevier, vol. 149(2), pages 417-429, September.
    7. Amini, Mehdi & Wakolbinger, Tina & Racer, Michael & Nejad, Mohammad G., 2012. "Alternative supply chain production–sales policies for new product diffusion: An agent-based modeling and simulation approach," European Journal of Operational Research, Elsevier, vol. 216(2), pages 301-311.
    8. Fred M. Tonge, 1960. "Summary of a Heuristic Line Balancing Procedure," Management Science, INFORMS, vol. 7(1), pages 21-42, October.
    9. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    10. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    11. Bautista, Joaquín & Cano, Alberto, 2011. "Solving mixed model sequencing problem in assembly lines with serial workstations with work overload minimisation and interruption rules," European Journal of Operational Research, Elsevier, vol. 210(3), pages 495-513, May.
    12. Mes, Martijn & van der Heijden, Matthieu & van Harten, Aart, 2007. "Comparison of agent-based scheduling to look-ahead heuristics for real-time transportation problems," European Journal of Operational Research, Elsevier, vol. 181(1), pages 59-75, August.
    13. Kim, Yeo Keun & Kim, Jae Yun & Kim, Yeongho, 2006. "An endosymbiotic evolutionary algorithm for the integration of balancing and sequencing in mixed-model U-lines," European Journal of Operational Research, Elsevier, vol. 168(3), pages 838-852, February.
    14. Anussornnitisarn, Pornthep & Nof, Shimon Y. & Etzion, Opher, 2005. "Decentralized control of cooperative and autonomous agents for solving the distributed resource allocation problem," International Journal of Production Economics, Elsevier, vol. 98(2), pages 114-128, November.
    15. He, N. & Zhang, D.Z. & Li, Q., 2014. "Agent-based hierarchical production planning and scheduling in make-to-order manufacturing system," International Journal of Production Economics, Elsevier, vol. 149(C), pages 117-130.
    16. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    17. Hamta, Nima & Fatemi Ghomi, S.M.T. & Jolai, F. & Akbarpour Shirazi, M., 2013. "A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect," International Journal of Production Economics, Elsevier, vol. 141(1), pages 99-111.
    18. Morrison, David R. & Sewell, Edward C. & Jacobson, Sheldon H., 2014. "An application of the branch, bound, and remember algorithm to a new simple assembly line balancing dataset," European Journal of Operational Research, Elsevier, vol. 236(2), pages 403-409.
    19. Bearzotti, Lorena A. & Salomone, Enrique & Chiotti, Omar J., 2012. "An autonomous multi-agent approach to supply chain event management," International Journal of Production Economics, Elsevier, vol. 135(1), pages 468-478.
    20. Ding, Fong-Yuen & Zhu, Jin & Sun, Hui, 2006. "Comparing two weighted approaches for sequencing mixed-model assembly lines with multiple objectives," International Journal of Production Economics, Elsevier, vol. 102(1), pages 108-131, July.
    21. Gokcen, Hadi & Agpak, Kursad & Benzer, Recep, 2006. "Balancing of parallel assembly lines," International Journal of Production Economics, Elsevier, vol. 103(2), pages 600-609, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heydar Ali Mardani-Fard & Abdollah Hadi-Vencheh & Ali Mahmoodirad & Sadegh Niroomand, 2020. "An effective hybrid goal programming approach for multi-objective straight assembly line balancing problem with stochastic parameters," Operational Research, Springer, vol. 20(4), pages 1939-1976, December.
    2. Minfang Huang & Qiong Guo & Jing Liu & Xiaoxu Huang, 2018. "Mixed Model Assembly Line Scheduling Approach to Order Picking Problem in Online Supermarkets," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    3. Ibrahim Kucukkoc & Kadir Buyukozkan & Sule Itir Satoglu & David Z. Zhang, 2019. "A mathematical model and artificial bee colony algorithm for the lexicographic bottleneck mixed-model assembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2913-2925, December.
    4. Ibrahim Kucukkoc & David Z. Zhang, 2017. "Balancing of mixed-model parallel U-shaped assembly lines considering model sequences," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 5958-5975, October.
    5. Lale Özbakır & Gökhan Seçme, 2022. "A hyper-heuristic approach for stochastic parallel assembly line balancing problems with equipment costs," Operational Research, Springer, vol. 22(1), pages 577-614, March.
    6. Lopes, Thiago Cantos & Michels, Adalberto Sato & Sikora, Celso Gustavo Stall & Molina, Rafael Gobbi & Magatão, Leandro, 2018. "Balancing and cyclically sequencing synchronous, asynchronous, and hybrid unpaced assembly lines," International Journal of Production Economics, Elsevier, vol. 203(C), pages 216-224.
    7. Hashemi-Petroodi, S. Ehsan & Thevenin, Simon & Kovalev, Sergey & Dolgui, Alexandre, 2023. "Markov decision process for multi-manned mixed-model assembly lines with walking workers," International Journal of Production Economics, Elsevier, vol. 255(C).
    8. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    9. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    10. Kucukkoc, Ibrahim & Li, Zixiang & Karaoglan, Aslan D. & Zhang, David Z., 2018. "Balancing of mixed-model two-sided assembly lines with underground workstations: A mathematical model and ant colony optimization algorithm," International Journal of Production Economics, Elsevier, vol. 205(C), pages 228-243.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    2. Sikora, Celso Gustavo Stall, 2024. "Balancing mixed-model assembly lines for random sequences," European Journal of Operational Research, Elsevier, vol. 314(2), pages 597-611.
    3. Lopes, Thiago Cantos & Michels, Adalberto Sato & Sikora, Celso Gustavo Stall & Molina, Rafael Gobbi & Magatão, Leandro, 2018. "Balancing and cyclically sequencing synchronous, asynchronous, and hybrid unpaced assembly lines," International Journal of Production Economics, Elsevier, vol. 203(C), pages 216-224.
    4. H. Mosadegh & S.M.T. Fatemi Ghomi & G.A. Süer, 2017. "Heuristic approaches for mixed-model sequencing problem with stochastic processing times," International Journal of Production Research, Taylor & Francis Journals, vol. 55(10), pages 2857-2880, May.
    5. Bautista, Joaquín & Alfaro, Rocío & Batalla, Cristina, 2015. "Modeling and solving the mixed-model sequencing problem to improve productivity," International Journal of Production Economics, Elsevier, vol. 161(C), pages 83-95.
    6. Ibrahim Kucukkoc & Kadir Buyukozkan & Sule Itir Satoglu & David Z. Zhang, 2019. "A mathematical model and artificial bee colony algorithm for the lexicographic bottleneck mixed-model assembly line balancing problem," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2913-2925, December.
    7. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    8. Lai, Tsung-Chyan & Sotskov, Yuri N. & Dolgui, Alexandre & Zatsiupa, Aksana, 2016. "Stability radii of optimal assembly line balances with a fixed workstation set," International Journal of Production Economics, Elsevier, vol. 182(C), pages 356-371.
    9. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2009. "Sequencing mixed-model assembly lines: Survey, classification and model critique," European Journal of Operational Research, Elsevier, vol. 192(2), pages 349-373, January.
    10. Lopes, Thiago Cantos & Pastre, Giuliano Vidal & Michels, Adalberto Sato & Magatão, Leandro, 2020. "Flexible multi-manned assembly line balancing problem: Model, heuristic procedure, and lower bounds for line length minimization," Omega, Elsevier, vol. 95(C).
    11. Bautista, Joaquín & Cano, Alberto & Alfaro, Rocío, 2012. "Models for MMSP-W considering workstation dependencies: A case study of Nissan’s Barcelona plant," European Journal of Operational Research, Elsevier, vol. 223(3), pages 669-679.
    12. Akpinar, Sener & Elmi, Atabak & Bektaş, Tolga, 2017. "Combinatorial Benders cuts for assembly line balancing problems with setups," European Journal of Operational Research, Elsevier, vol. 259(2), pages 527-537.
    13. Walter, Rico & Schulze, Philipp & Scholl, Armin, 2021. "SALSA: Combining branch-and-bound with dynamic programming to smoothen workloads in simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 295(3), pages 857-873.
    14. Borba, Leonardo & Ritt, Marcus & Miralles, Cristóbal, 2018. "Exact and heuristic methods for solving the Robotic Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 146-156.
    15. Ibrahim Kucukkoc & David Z. Zhang, 2017. "Balancing of mixed-model parallel U-shaped assembly lines considering model sequences," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 5958-5975, October.
    16. Bukchin, Yossi & Raviv, Tal, 2018. "Constraint programming for solving various assembly line balancing problems," Omega, Elsevier, vol. 78(C), pages 57-68.
    17. Pereira, Jordi & Álvarez-Miranda, Eduardo, 2018. "An exact approach for the robust assembly line balancing problem," Omega, Elsevier, vol. 78(C), pages 85-98.
    18. Minghai Yuan & Hongyan Yu & Jinting Huang & Aimin Ji, 2019. "Reconfigurable assembly line balancing for cloud manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2391-2405, August.
    19. Pereira, Jordi, 2016. "Procedures for the bin packing problem with precedence constraints," European Journal of Operational Research, Elsevier, vol. 250(3), pages 794-806.
    20. Boysen, Nils & Fliedner, Malte & Scholl, Armin, 2008. "Assembly line balancing: Which model to use when," International Journal of Production Economics, Elsevier, vol. 111(2), pages 509-528, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:158:y:2014:i:c:p:314-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.