My bibliography
Save this item
Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sujay Mukhoti & Pritam Ranjan, 2019.
"A new class of discrete-time stochastic volatility model with correlated errors,"
Applied Economics, Taylor & Francis Journals, vol. 51(3), pages 259-277, January.
- Sujay Mukhoti & Pritam Ranjan, 2017. "A New Class of Discrete-time Stochastic Volatility Model with Correlated Errors," Papers 1703.06603, arXiv.org.
- Sujay Mukhoti & Pritam Ranjan, 2016. "Mean-correction and Higher Order Moments for a Stochastic Volatility Model with Correlated Errors," Papers 1605.02418, arXiv.org.
- Ferraz, V.R.S. & Moura, F.A.S., 2012. "Small area estimation using skew normal models," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2864-2874.
- Auray, Stéphane & Eyquem, Aurélien & Jouneau-Sion, Frédéric, 2014.
"Modeling tails of aggregate economic processes in a stochastic growth model,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 76-94.
- Stéphane Auray & Aurélien Eyquem & Fréderic Jouneau-Sion, 2012. "Modelling Tails of Aggregated Economic Processes in a Stochastic Growth Model," Working Papers 2012-29, Center for Research in Economics and Statistics.
- Stéphane Auray & Aurélien Eyquem & Frédéric Jouneau-Sion, 2014. "Modelling Tails of Aggregated Economic Processes in a Stochastic Growth Model," Post-Print halshs-00995703, HAL.
- repec:cte:wsrepe:ws131110 is not listed on IDEAS
- C. A. Abanto-Valle & V. H. Lachos & Dipak K. Dey, 2015. "Bayesian Estimation of a Skew-Student-t Stochastic Volatility Model," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 721-738, September.
- Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
- Hedibert F. Lopes & Nicholas G. Polson, 2016. "Particle Learning for Fat-Tailed Distributions," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1666-1691, December.
- Carlos A. Abanto-Valle & Gabriel Rodríguez & Hernán B. Garrafa-Aragón, 2020. "Stochastic Volatility in Mean: Empirical Evidence from Stock Latin American Markets," Documentos de Trabajo / Working Papers 2020-481, Departamento de Economía - Pontificia Universidad Católica del Perú.
- Carlos A. Abanto‐Valle & Roland Langrock & Ming‐Hui Chen & Michel V. Cardoso, 2017. "Maximum likelihood estimation for stochastic volatility in mean models with heavy‐tailed distributions," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 394-408, August.
- Abbas Mahdavi & Anthony F. Desmond & Ahad Jamalizadeh & Tsung-I Lin, 2024. "Skew Multiple Scaled Mixtures of Normal Distributions with Flexible Tail Behavior and Their Application to Clustering," Journal of Classification, Springer;The Classification Society, vol. 41(3), pages 620-649, November.
- Chen, Liyuan & Zerilli, Paola & Baum, Christopher F., 2019.
"Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications,"
Energy Economics, Elsevier, vol. 79(C), pages 111-129.
- Liyuan Chen & Paola Zerilli & Christopher F Baum, 2018. "Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications," Boston College Working Papers in Economics 953, Boston College Department of Economics.
- Mukhoti, Sujay, 2014. "Non-Stationary Stochastic Volatility Model for Dynamic Feedback and Skewness," MPRA Paper 62532, University Library of Munich, Germany.
- Chan, Joshua C.C. & Grant, Angelia L., 2016.
"Fast computation of the deviance information criterion for latent variable models,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 847-859.
- Joshua C.C. Chan & Angelia L. Grant, 2014. "Fast Computation of the Deviance Information Criterion for Latent Variable Models," CAMA Working Papers 2014-09, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Ying Wang & Sai Tsang Boris Choy & Hoi Ying Wong, 2016. "Bayesian Option Pricing Framework with Stochastic Volatility for FX Data," Risks, MDPI, vol. 4(4), pages 1-12, December.
- repec:cte:wsrepe:ws142618 is not listed on IDEAS
- Fengkai Yang & Haijing Yuan, 2017. "A Non-iterative Bayesian Sampling Algorithm for Linear Regression Models with Scale Mixtures of Normal Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 579-597, April.
- Nonejad Nima, 2015. "Particle Gibbs with ancestor sampling for stochastic volatility models with: heavy tails, in mean effects, leverage, serial dependence and structural breaks," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(5), pages 561-584, December.
- Audrone Virbickaite & Hedibert F. Lopes, 2018. "Bayesian Semi-Parametric Markov Switching Stochastic Volatility Model," DEA Working Papers 89, Universitat de les Illes Balears, Departament d'Economía Aplicada.
- Joshua C. C. Chan, 2018.
"Specification tests for time-varying parameter models with stochastic volatility,"
Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
- Joshua C.C. Chan, 2015. "Specification tests for time-varying parameter models with stochastic volatility," CAMA Working Papers 2015-42, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
- Joshua C. C. Chan & Eric Eisenstat, 2018.
"Bayesian model comparison for time‐varying parameter VARs with stochastic volatility,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 509-532, June.
- Joshua C.C. Chan & Eric Eisenstat, 2015. "Bayesian model comparison for time-varying parameter VARs with stochastic volatility," CAMA Working Papers 2015-32, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Carlos A. Abanto-Valle & Gabriel Rodríguez & Luis M. Castro Cepero & Hernán B. Garrafa-Aragón, 2024. "Approximate Bayesian Estimation of Stochastic Volatility in Mean Models Using Hidden Markov Models: Empirical Evidence from Emerging and Developed Markets," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1775-1801, September.
- Roland Langrock & Théo Michelot & Alexander Sohn & Thomas Kneib, 2015. "Semiparametric stochastic volatility modelling using penalized splines," Computational Statistics, Springer, vol. 30(2), pages 517-537, June.
- Carlos A. Abanto-Valle & Hernán B. Garrafa-Aragón, 2019. "Threshold Stochastic Volatility Models with Heavy Tails:A Bayesian Approach," Revista Economía, Fondo Editorial - Pontificia Universidad Católica del Perú, vol. 42(83), pages 32-53.
- Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
- Bruno Ebner & Bernhard Klar & Simos G. Meintanis, 2018. "Fourier inference for stochastic volatility models with heavy-tailed innovations," Statistical Papers, Springer, vol. 59(3), pages 1043-1060, September.