IDEAS home Printed from https://ideas.repec.org/r/eee/csdana/v50y2006i9p2422-2446.html
   My bibliography  Save this item

Dimension reduction in functional regression with applications

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Guochang Wang & Xinyuan Song, 2018. "Functional Sufficient Dimension Reduction for Functional Data Classification," Journal of Classification, Springer;The Classification Society, vol. 35(2), pages 250-272, July.
  2. Gregorutti, Baptiste & Michel, Bertrand & Saint-Pierre, Philippe, 2015. "Grouped variable importance with random forests and application to multiple functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 15-35.
  3. Guochang Wang & Beiting Liang & Hansheng Wang & Baoxue Zhang & Baojian Xie, 2021. "Dimension reduction for functional regression with a binary response," Statistical Papers, Springer, vol. 62(1), pages 193-208, February.
  4. Coudret, R. & Girard, S. & Saracco, J., 2014. "A new sliced inverse regression method for multivariate response," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 285-299.
  5. Guochang Wang & Jianjun Zhou & Wuqing Wu & Min Chen, 2017. "Robust functional sliced inverse regression," Statistical Papers, Springer, vol. 58(1), pages 227-245, March.
  6. Guochang Wang, 2017. "Dimension reduction in functional regression with categorical predictor," Computational Statistics, Springer, vol. 32(2), pages 585-609, June.
  7. Wen, Xuerong Meggie, 2010. "On sufficient dimension reduction for proportional censorship model with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1975-1982, August.
  8. Linjuan Zheng & Beiting Liang & Guochang Wang, 2024. "Adaptive slicing for functional slice inverse regression," Statistical Papers, Springer, vol. 65(5), pages 3261-3284, July.
  9. André Mas & Besnik Pumo, 2009. "Functional linear regression with derivatives," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(1), pages 19-40.
  10. Usset, Joseph & Staicu, Ana-Maria & Maity, Arnab, 2016. "Interaction models for functional regression," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 317-329.
  11. Wang, Guochang & Zhou, Yan & Feng, Xiang-Nan & Zhang, Baoxue, 2015. "The hybrid method of FSIR and FSAVE for functional effective dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 64-77.
  12. Escabias, M. & Aguilera, A.M. & Valderrama, M.J., 2007. "Functional PLS logit regression model," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4891-4902, June.
  13. Aldo Goia & Philippe Vieu, 2015. "A partitioned Single Functional Index Model," Computational Statistics, Springer, vol. 30(3), pages 673-692, September.
  14. Goldsmith, Jeff & Scheipl, Fabian, 2014. "Estimator selection and combination in scalar-on-function regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 362-372.
  15. Apanasovich, Tatiyana V. & Goldstein, Edward, 2008. "On prediction error in functional linear regression," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1807-1810, September.
  16. Chiou, Jeng-Min & Yang, Ya-Fang & Chen, Yu-Ting, 2016. "Multivariate functional linear regression and prediction," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 301-312.
  17. Ciarleglio, Adam & Todd Ogden, R., 2016. "Wavelet-based scalar-on-function finite mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 86-96.
  18. Hyokyoung Grace Hong & Jianhui Zhou, 2013. "A multi-index model for quantile regression with ordinal data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(6), pages 1231-1245, June.
  19. Wang, Qin & Yao, Weixin, 2012. "An adaptive estimation of MAVE," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 88-100, February.
  20. Wang, Guochang & Lin, Nan & Zhang, Baoxue, 2014. "Functional k-means inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 172-182.
  21. Guochang Wang & Zengyao Wen & Shanming Jia & Shanshan Liang, 2024. "Supervised dimension reduction for functional time series," Statistical Papers, Springer, vol. 65(7), pages 4057-4077, September.
  22. Wang, Qin & Yin, Xiangrong, 2011. "Estimation of inverse mean: An orthogonal series approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1656-1664, April.
  23. Girard, Stéphane & Lorenzo, Hadrien & Saracco, Jérôme, 2022. "Advanced topics in Sliced Inverse Regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
  24. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
  25. Pian Chen & Aaron Smith, 2013. "The nonlinear multidimensional relationship between stock returns and the macroeconomy," Applied Economics, Taylor & Francis Journals, vol. 45(35), pages 4985-4999, December.
  26. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
  27. Wang, Guochang & Lin, Nan & Zhang, Baoxue, 2013. "Functional contour regression," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 1-13.
  28. Ming‐Yueh Huang & Kwun Chuen Gary Chan, 2024. "Gradient‐based approach to sufficient dimension reduction with functional or longitudinal covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(4), pages 1567-1586, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.