IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v32y2017i2d10.1007_s00180-016-0675-1.html
   My bibliography  Save this article

Dimension reduction in functional regression with categorical predictor

Author

Listed:
  • Guochang Wang

    (Jinan University)

Abstract

In the present paper, we consider dimension reduction methods for functional regression with a scalar response and the predictors including a random curve and a categorical random variable. To deal with the categorical random variable, we propose three potential dimension reduction methods: partial functional sliced inverse regression, marginal functional sliced inverse regression and conditional functional sliced inverse regression. Furthermore, we investigate the relationships among the three methods. In addition, a new modified BIC criterion for determining the dimension of the effective dimension reduction space is developed. Real and simulation data examples are then presented to show the effectiveness of the proposed methods.

Suggested Citation

  • Guochang Wang, 2017. "Dimension reduction in functional regression with categorical predictor," Computational Statistics, Springer, vol. 32(2), pages 585-609, June.
  • Handle: RePEc:spr:compst:v:32:y:2017:i:2:d:10.1007_s00180-016-0675-1
    DOI: 10.1007/s00180-016-0675-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-016-0675-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-016-0675-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Guochang & Lin, Nan & Zhang, Baoxue, 2014. "Functional k-means inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 172-182.
    2. Amato, U. & Antoniadis, A. & De Feis, I., 2006. "Dimension reduction in functional regression with applications," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2422-2446, May.
    3. Francesca Chiaromonte & R. Cook, 2002. "Sufficient Dimension Reduction and Graphics in Regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(4), pages 768-795, December.
    4. Cook, R. Dennis & Forzani, Liliana, 2009. "Likelihood-Based Sufficient Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 197-208.
    5. Wayne DeSarbo & William Cron, 1988. "A maximum likelihood methodology for clusterwise linear regression," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 249-282, September.
    6. Zhu, Lixing & Miao, Baiqi & Peng, Heng, 2006. "On Sliced Inverse Regression With High-Dimensional Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 630-643, June.
    7. Wang, Guochang & Zhou, Yan & Feng, Xiang-Nan & Zhang, Baoxue, 2015. "The hybrid method of FSIR and FSAVE for functional effective dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 64-77.
    8. Aldo Goia & Philippe Vieu, 2015. "A partitioned Single Functional Index Model," Computational Statistics, Springer, vol. 30(3), pages 673-692, September.
    9. Kehui Chen & Jing Lei, 2015. "Localized Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1266-1275, September.
    10. Lian, Heng & Li, Gaorong, 2014. "Series expansion for functional sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 150-165.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guochang Wang & Xinyuan Song, 2018. "Functional Sufficient Dimension Reduction for Functional Data Classification," Journal of Classification, Springer;The Classification Society, vol. 35(2), pages 250-272, July.
    2. Guochang Wang & Jianjun Zhou & Wuqing Wu & Min Chen, 2017. "Robust functional sliced inverse regression," Statistical Papers, Springer, vol. 58(1), pages 227-245, March.
    3. Linjuan Zheng & Beiting Liang & Guochang Wang, 2024. "Adaptive slicing for functional slice inverse regression," Statistical Papers, Springer, vol. 65(5), pages 3261-3284, July.
    4. Guochang Wang & Beiting Liang & Hansheng Wang & Baoxue Zhang & Baojian Xie, 2021. "Dimension reduction for functional regression with a binary response," Statistical Papers, Springer, vol. 62(1), pages 193-208, February.
    5. Lili Xia & Tingyu Lai & Zhongzhan Zhang, 2023. "An Adaptive-to-Model Test for Parametric Functional Single-Index Model," Mathematics, MDPI, vol. 11(8), pages 1-25, April.
    6. Wang, Guochang & Zhou, Yan & Feng, Xiang-Nan & Zhang, Baoxue, 2015. "The hybrid method of FSIR and FSAVE for functional effective dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 64-77.
    7. Guochang Wang & Zengyao Wen & Shanming Jia & Shanshan Liang, 2024. "Supervised dimension reduction for functional time series," Statistical Papers, Springer, vol. 65(7), pages 4057-4077, September.
    8. Scrucca, Luca, 2011. "Model-based SIR for dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3010-3026, November.
    9. Allam, Abdelaziz & Mourid, Tahar, 2019. "Optimal rate for covariance operator estimators of functional autoregressive processes with random coefficients," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 130-137.
    10. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "An Effective Semiparametric Estimation Approach for the Sufficient Dimension Reduction Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1296-1310, July.
    11. Wang, Guochang & Lin, Nan & Zhang, Baoxue, 2013. "Functional contour regression," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 1-13.
    12. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    13. Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.
    14. Guochang Wang & Xiang-Nan Feng & Min Chen, 2016. "Functional Partial Linear Single-index Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 261-274, March.
    15. Liu, Xuejing & Huo, Lei & Wen, Xuerong Meggie & Paige, Robert, 2017. "A link-free approach for testing common indices for three or more multi-index models," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 236-245.
    16. Zhang, Xin & Wang, Chong & Wu, Yichao, 2018. "Functional envelope for model-free sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 37-50.
    17. Deng, Jianqiu & Yang, Xiaojie & Wang, Qihua, 2022. "Surrogate space based dimension reduction for nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    18. Girard, Stéphane & Lorenzo, Hadrien & Saracco, Jérôme, 2022. "Advanced topics in Sliced Inverse Regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    19. Forzani, Liliana & García Arancibia, Rodrigo & Llop, Pamela & Tomassi, Diego, 2018. "Supervised dimension reduction for ordinal predictors," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 136-155.
    20. Chiou, Jeng-Min & Yang, Ya-Fang & Chen, Yu-Ting, 2016. "Multivariate functional linear regression and prediction," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 301-312.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:32:y:2017:i:2:d:10.1007_s00180-016-0675-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.