IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v93y2012icp364-370.html
   My bibliography  Save this item

Probabilistic forecasting of the wave energy flux

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C. & Falcão, A.F.O. & Varandas, J., 2019. "Test results of a 30 kW self-rectifying biradial air turbine-generator prototype," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 187-198.
  2. He, Fang & Huang, Zhenhua & Law, Adrian Wing-Keung, 2013. "An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction," Applied Energy, Elsevier, vol. 106(C), pages 222-231.
  3. López-Ruiz, Alejandro & Bergillos, Rafael J. & Lira-Loarca, Andrea & Ortega-Sánchez, Miguel, 2018. "A methodology for the long-term simulation and uncertainty analysis of the operational lifetime performance of wave energy converter arrays," Energy, Elsevier, vol. 153(C), pages 126-135.
  4. López-Ruiz, Alejandro & Bergillos, Rafael J. & Ortega-Sánchez, Miguel, 2016. "The importance of wave climate forecasting on the decision-making process for nearshore wave energy exploitation," Applied Energy, Elsevier, vol. 182(C), pages 191-203.
  5. Zheng, C.W. & Li, C.Y., 2017. "Propagation characteristic and intraseasonal oscillation of the swell energy of the Indian Ocean," Applied Energy, Elsevier, vol. 197(C), pages 342-353.
  6. Veigas, M. & López, M. & Iglesias, G., 2014. "Assessing the optimal location for a shoreline wave energy converter," Applied Energy, Elsevier, vol. 132(C), pages 404-411.
  7. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
  8. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  9. Alireza Shadmani & Mohammad Reza Nikoo & Riyadh I. Al-Raoush & Nasrin Alamdari & Amir H. Gandomi, 2022. "The Optimal Configuration of Wave Energy Conversions Respective to the Nearshore Wave Energy Potential," Energies, MDPI, vol. 15(20), pages 1-29, October.
  10. Ayob, Mohd Nasir & Castellucci, Valeria & Waters, Rafael, 2017. "Wave energy potential and 1–50 TWh scenarios for the Nordic synchronous grid," Renewable Energy, Elsevier, vol. 101(C), pages 462-466.
  11. Xu, Xinxin & Robertson, Bryson & Buckham, Bradley, 2020. "A techno-economic approach to wave energy resource assessment and development site identification," Applied Energy, Elsevier, vol. 260(C).
  12. Bubbar, K. & Buckham, B., 2018. "On establishing an analytical power capture limit for self-reacting point absorber wave energy converters based on dynamic response," Applied Energy, Elsevier, vol. 228(C), pages 324-338.
  13. Sun, Peidong & Xu, Bin & Wang, Jichao, 2022. "Long-term trend analysis and wave energy assessment based on ERA5 wave reanalysis along the Chinese coastline," Applied Energy, Elsevier, vol. 324(C).
  14. Reikard, Gordon & Robertson, Bryson & Bidlot, Jean-Raymond, 2015. "Combining wave energy with wind and solar: Short-term forecasting," Renewable Energy, Elsevier, vol. 81(C), pages 442-456.
  15. Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
  16. Zhang, H.C. & Xu, D.L. & Liu, C.R. & Wu, Y.S., 2016. "Wave energy absorption of a wave farm with an array of buoys and flexible runway," Energy, Elsevier, vol. 109(C), pages 211-223.
  17. Neill, Simon P. & Hashemi, M. Reza, 2013. "Wave power variability over the northwest European shelf seas," Applied Energy, Elsevier, vol. 106(C), pages 31-46.
  18. Zhang, Haicheng & Xu, Daolin & Zhao, Huai & Xia, Shuyan & Wu, Yousheng, 2018. "Energy extraction of wave energy converters embedded in a very large modularized floating platform," Energy, Elsevier, vol. 158(C), pages 317-329.
  19. Liang, Bingchen & Shao, Zhuxiao & Wu, Guoxiang & Shao, Meng & Sun, Jinwei, 2017. "New equations of wave energy assessment accounting for the water depth," Applied Energy, Elsevier, vol. 188(C), pages 130-139.
  20. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
  21. Keskin Citiroglu, H. & Okur, A., 2014. "An approach to wave energy converter applications in Eregli on the western Black Sea coast of Turkey," Applied Energy, Elsevier, vol. 135(C), pages 738-747.
  22. Younesian, Davood & Alam, Mohammad-Reza, 2017. "Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting," Applied Energy, Elsevier, vol. 197(C), pages 292-302.
  23. Huang, Sy-Ruen & Chen, Hong-Tai & Chung, Chih-Hung & Chu, Chen-Yeon & Li, Gung-Ching & Wu, Chueh-Cheng, 2012. "Multivariable direct-drive linear generators for wave energy," Applied Energy, Elsevier, vol. 100(C), pages 112-117.
  24. Wang, H.Z. & Wang, G.B. & Li, G.Q. & Peng, J.C. & Liu, Y.T., 2016. "Deep belief network based deterministic and probabilistic wind speed forecasting approach," Applied Energy, Elsevier, vol. 182(C), pages 80-93.
  25. Zilong, Ti & Yubing, Song & Xiaowei, Deng, 2022. "Spatial-temporal wave height forecast using deep learning and public reanalysis dataset," Applied Energy, Elsevier, vol. 326(C).
  26. Humberto Verdejo & Almendra Awerkin & Wolfgang Kliemann & Cristhian Becker & Héctor Chávez & Karina A. Barbosa & José Delpiano, 2019. "A Dynamic Stochastic Hybrid Model to Represent Significant Wave Height and Wave Period for Marine Energy Representation," Energies, MDPI, vol. 12(5), pages 1-15, March.
  27. Xiaoying Ren & Yongqian Liu & Fei Zhang & Lingfeng Li, 2024. "A Deep Learning Quantile Regression Photovoltaic Power-Forecasting Method under a Priori Knowledge Injection," Energies, MDPI, vol. 17(16), pages 1-25, August.
  28. Cuadra, L. & Salcedo-Sanz, S. & Nieto-Borge, J.C. & Alexandre, E. & Rodríguez, G., 2016. "Computational intelligence in wave energy: Comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1223-1246.
  29. Robertson, Bryson & Bekker, Jessica & Buckham, Bradley, 2020. "Renewable integration for remote communities: Comparative allowable cost analyses for hydro, solar and wave energy," Applied Energy, Elsevier, vol. 264(C).
  30. Ning, De-Zhi & Wang, Rong-Quan & Zou, Qing-Ping & Teng, Bin, 2016. "An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter," Applied Energy, Elsevier, vol. 168(C), pages 636-648.
  31. Roy, Sanjoy, 2021. "Analytical estimates of short duration mean power output and variability for deepwater wave power generation," Energy, Elsevier, vol. 230(C).
  32. Widén, Joakim & Carpman, Nicole & Castellucci, Valeria & Lingfors, David & Olauson, Jon & Remouit, Flore & Bergkvist, Mikael & Grabbe, Mårten & Waters, Rafael, 2015. "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 356-375.
  33. Jeon, Jooyoung & Taylor, James W., 2016. "Short-term density forecasting of wave energy using ARMA-GARCH models and kernel density estimation," International Journal of Forecasting, Elsevier, vol. 32(3), pages 991-1004.
  34. Gao, Yuping & Shao, Shuangquan & Zou, Huiming & Tang, Mingsheng & Xu, Hongbo & Tian, Changqing, 2016. "A fully floating system for a wave energy converter with direct-driven linear generator," Energy, Elsevier, vol. 95(C), pages 99-109.
  35. Son, Daewoong & Yeung, Ronald W., 2017. "Optimizing ocean-wave energy extraction of a dual coaxial-cylinder WEC using nonlinear model predictive control," Applied Energy, Elsevier, vol. 187(C), pages 746-757.
  36. Zheng, Chong Wei & Wang, Qing & Li, Chong Yin, 2017. "An overview of medium- to long-term predictions of global wave energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1492-1502.
  37. Cheng, Yong & Ji, Chunyan & Zhai, Gangjun, 2019. "Fully nonlinear analysis incorporating viscous effects for hydrodynamics of an oscillating wave surge converter with nonlinear power take-off system," Energy, Elsevier, vol. 179(C), pages 1067-1081.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.