IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v88y2011i8p2835-2845.html
   My bibliography  Save this item

An interval-parameter minimax regret programming approach for power management systems planning under uncertainty

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wang, S. & Xie, Y.L. & Huang, G.H. & Yao, Y. & Wang, S.Y. & Li, Y.F., 2021. "A Structural Adjustment optimization model for electric-power system management under multiple Uncertainties—A case study of Urumqi city, China," Energy Policy, Elsevier, vol. 149(C).
  2. Yokoyama, Ryohei & Kamada, Hiroki & Shinano, Yuji & Wakui, Tetsuya, 2021. "A hierarchical optimization approach to robust design of energy supply systems based on a mixed-integer linear model," Energy, Elsevier, vol. 229(C).
  3. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
  4. S. Rivaz & M. Yaghoobi, 2013. "Minimax regret solution to multiobjective linear programming problems with interval objective functions coefficients," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 625-649, September.
  5. Dong, Cong & Huang, Guohe & Cai, Yanpeng & Li, Wei & Cheng, Guanhui, 2014. "Fuzzy interval programming for energy and environmental systems management under constraint-violation and energy-substitution effects: A case study for the City of Beijing," Energy Economics, Elsevier, vol. 46(C), pages 375-394.
  6. Quattrocchi, Fedora & Boschi, Enzo & Spena, Angelo & Buttinelli, Mauro & Cantucci, Barbara & Procesi, Monia, 2013. "Synergic and conflicting issues in planning underground use to produce energy in densely populated countries, as Italy," Applied Energy, Elsevier, vol. 101(C), pages 393-412.
  7. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
  8. Juan Ma & Ying Tat Leung & Manjunath Kamath, 2019. "Service System Design Under Information Uncertainty: Insights from an M/G/1 Model," Service Science, INFORMS, vol. 11(1), pages 40-56, March.
  9. Tsung-Yung Chiu & Shang-Lien Lo & Yung-Yin Tsai, 2012. "Establishing an Integration-Energy-Practice Model for Improving Energy Performance Indicators in ISO 50001 Energy Management Systems," Energies, MDPI, vol. 5(12), pages 1-16, December.
  10. Bo Feng & Jixin Zhao & Zheyu Jiang, 2022. "Robust pricing for airlines with partial information," Annals of Operations Research, Springer, vol. 310(1), pages 49-87, March.
  11. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
  12. Majewski, Dinah Elena & Lampe, Matthias & Voll, Philip & Bardow, André, 2017. "TRusT: A Two-stage Robustness Trade-off approach for the design of decentralized energy supply systems," Energy, Elsevier, vol. 118(C), pages 590-599.
  13. Yokoyama, Ryohei & Tokunaga, Akira & Wakui, Tetsuya, 2018. "Robust optimal design of energy supply systems under uncertain energy demands based on a mixed-integer linear model," Energy, Elsevier, vol. 153(C), pages 159-169.
  14. Wei Wu & Manuel Iori & Silvano Martello & Mutsunori Yagiura, 2022. "An Iterated Dual Substitution Approach for Binary Integer Programming Problems Under the Min-Max Regret Criterion," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2523-2539, September.
  15. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
  16. Jungho Park & Hadi El-Amine & Nevin Mutlu, 2021. "An Exact Algorithm for Large-Scale Continuous Nonlinear Resource Allocation Problems with Minimax Regret Objectives," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1213-1228, July.
  17. Ji, L. & Niu, D.X. & Huang, G.H., 2014. "An inexact two-stage stochastic robust programming for residential micro-grid management-based on random demand," Energy, Elsevier, vol. 67(C), pages 186-199.
  18. Soon-Ryul Nam & Sang-Hee Kang & Joo-Ho Lee & Eun-Jae Choi & Seon-Ju Ahn & Joon-Ho Choi, 2013. "EMS-Data-Based Load Modeling to Evaluate the Effect of Conservation Voltage Reduction at a National Level," Energies, MDPI, vol. 6(8), pages 1-14, July.
  19. Huang, Runya & Huang, Guohe & Cheng, Guanhui & Dong, Cong, 2017. "Regional heuristic interval recourse power system analysis for electricity and environmental systems planning in Eastern China," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 185-201.
  20. Nock, Destenie & Levin, Todd & Baker, Erin, 2020. "Changing the policy paradigm: A benefit maximization approach to electricity planning in developing countries," Applied Energy, Elsevier, vol. 264(C).
  21. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "An integrated model for long-term power generation planning toward future smart electricity systems," Applied Energy, Elsevier, vol. 112(C), pages 1424-1437.
  22. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
  23. Georgios P. Trachanas & Aikaterini Forouli & Nikolaos Gkonis & Haris Doukas, 2020. "Hedging uncertainty in energy efficiency strategies: a minimax regret analysis," Operational Research, Springer, vol. 20(4), pages 2229-2244, December.
  24. Yokoyama, Ryohei & Nakamura, Ryo & Wakui, Tetsuya, 2017. "Performance comparison of energy supply systems under uncertain energy demands based on a mixed-integer linear model," Energy, Elsevier, vol. 137(C), pages 878-887.
  25. Fernández-Blanco, Ricardo & Arroyo, José M. & Alguacil, Natalia, 2014. "Consumer payment minimization under uniform pricing: A mixed-integer linear programming approach," Applied Energy, Elsevier, vol. 114(C), pages 676-686.
  26. Trotter, Philipp A. & Cooper, Nathanial J. & Wilson, Peter R., 2019. "A multi-criteria, long-term energy planning optimisation model with integrated on-grid and off-grid electrification – The case of Uganda," Applied Energy, Elsevier, vol. 243(C), pages 288-312.
  27. Wang, Xingwei & Cai, Yanpeng & Chen, Jiajun & Dai, Chao, 2013. "A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management–A case study of Beijing," Energy, Elsevier, vol. 63(C), pages 334-344.
  28. Wei Sun & Jingmin Wang & Hong Chang, 2012. "Forecasting Annual Power Generation Using a Harmony Search Algorithm-Based Joint Parameters Optimization Combination Model," Energies, MDPI, vol. 5(10), pages 1-24, October.
  29. Tan, Raymond R., 2011. "A general source-sink model with inoperability constraints for robust energy sector planning," Applied Energy, Elsevier, vol. 88(11), pages 3759-3764.
  30. Chen, J.P. & Huang, G. & Baetz, B.W. & Lin, Q.G. & Dong, C. & Cai, Y.P., 2018. "Integrated inexact energy systems planning under climate change: A case study of Yukon Territory, Canada," Applied Energy, Elsevier, vol. 229(C), pages 493-504.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.