IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v88y2011i1p232-241.html
   My bibliography  Save this item

Life cycle cost and energy analysis of a Net Zero Energy House with solar combisystem

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sokolnikova, P. & Lombardi, P. & Arendarski, B. & Suslov, K. & Pantaleo, A.M. & Kranhold, M. & Komarnicki, P., 2020. "Net-zero multi-energy systems for Siberian rural communities: A methodology to size thermal and electric storage units," Renewable Energy, Elsevier, vol. 155(C), pages 979-989.
  2. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
  3. Villa-Arrieta, Manuel & Sumper, Andreas, 2018. "A model for an economic evaluation of energy systems using TRNSYS," Applied Energy, Elsevier, vol. 215(C), pages 765-777.
  4. Martinopoulos, G. & Tsilingiridis, G. & Kyriakis, N., 2013. "Identification of the environmental impact from the use of different materials in domestic solar hot water systems," Applied Energy, Elsevier, vol. 102(C), pages 545-555.
  5. Goe, Michele & Gaustad, Gabrielle, 2014. "Strengthening the case for recycling photovoltaics: An energy payback analysis," Applied Energy, Elsevier, vol. 120(C), pages 41-48.
  6. Berry, Stephen & Davidson, Kathryn, 2015. "Zero energy homes – Are they economically viable?," Energy Policy, Elsevier, vol. 85(C), pages 12-21.
  7. Yvan Dutil & Daniel Rousse & Guillermo Quesada, 2011. "Sustainable Buildings: An Ever Evolving Target," Sustainability, MDPI, vol. 3(2), pages 1-22, February.
  8. Pacheco, Miguel & Lamberts, Roberto, 2013. "Assessment of technical and economical viability for large-scale conversion of single family residential buildings into zero energy buildings in Brazil: Climatic and cultural considerations," Energy Policy, Elsevier, vol. 63(C), pages 716-725.
  9. Colclough, Shane & McGrath, Teresa, 2015. "Net energy analysis of a solar combi system with Seasonal Thermal Energy Store," Applied Energy, Elsevier, vol. 147(C), pages 611-616.
  10. Stephan, André & Stephan, Laurent, 2016. "Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings," Applied Energy, Elsevier, vol. 161(C), pages 445-464.
  11. Lamnatou, Chr. & Chemisana, D. & Mateus, R. & Almeida, M.G. & Silva, S.M., 2015. "Review and perspectives on Life Cycle Analysis of solar technologies with emphasis on building-integrated solar thermal systems," Renewable Energy, Elsevier, vol. 75(C), pages 833-846.
  12. Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.
  13. Iakovos T. Michailidis & Roozbeh Sangi & Panagiotis Michailidis & Thomas Schild & Johannes Fuetterer & Dirk Mueller & Elias B. Kosmatopoulos, 2020. "Balancing Energy Efficiency with Indoor Comfort Using Smart Control Agents: A Simulative Case Study," Energies, MDPI, vol. 13(23), pages 1-28, November.
  14. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
  15. Stephan, André & Stephan, Laurent, 2020. "Achieving net zero life cycle primary energy and greenhouse gas emissions apartment buildings in a Mediterranean climate," Applied Energy, Elsevier, vol. 280(C).
  16. Rey, Anthony & Zmeureanu, Radu, 2018. "Multi-objective optimization framework for the selection of configuration and equipment sizing of solar thermal combisystems," Energy, Elsevier, vol. 145(C), pages 182-194.
  17. Colclough, Shane & Griffiths, Philip, 2016. "Financial analysis of an installed small scale seasonal thermal energy store," Renewable Energy, Elsevier, vol. 86(C), pages 422-428.
  18. Sergio Bruno & Maria Dicorato & Massimo La Scala & Roberto Sbrizzai & Pio Alessandro Lombardi & Bartlomiej Arendarski, 2019. "Optimal Sizing and Operation of Electric and Thermal Storage in a Net Zero Multi Energy System," Energies, MDPI, vol. 12(17), pages 1-16, September.
  19. Žandeckis, Aivars & Timma, Lelde & Blumberga, Dagnija & Rochas, Claudio & Rošā, Marika, 2013. "Solar and pellet combisystem for apartment buildings: Heat losses and efficiency improvements of the pellet boiler," Applied Energy, Elsevier, vol. 101(C), pages 244-252.
  20. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
  21. Sakdirat Kaewunruen & Panrawee Rungskunroch & Joshua Welsh, 2018. "A Digital-Twin Evaluation of Net Zero Energy Building for Existing Buildings," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
  22. Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.
  23. Bojic, Milorad & Nikolic, Novak & Nikolic, Danijela & Skerlic, Jasmina & Miletic, Ivan, 2011. "Toward a positive-net-energy residential building in Serbian conditions," Applied Energy, Elsevier, vol. 88(7), pages 2407-2419, July.
  24. André Stephan & Robert H. Crawford & Victor Bunster & Georgia Warren‐Myers & Sareh Moosavi, 2022. "Towards a multiscale framework for modeling and improving the life cycle environmental performance of built stocks," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1195-1217, August.
  25. Rezaei, M. & Anisur, M.R. & Mahfuz, M.H. & Kibria, M.A. & Saidur, R. & Metselaar, I.H.S.C., 2013. "Performance and cost analysis of phase change materials with different melting temperatures in heating systems," Energy, Elsevier, vol. 53(C), pages 173-178.
  26. Bojić, Milorad & Cvetković, Dragan & Bojić, Ljubiša, 2015. "Decreasing energy use and influence to environment by radiant panel heating using different energy sources," Applied Energy, Elsevier, vol. 138(C), pages 404-413.
  27. Finnegan, Stephen & Sharples, Steve & Johnston, Tom & Fulton, Matt, 2018. "The carbon impact of a UK safari park – Application of the GHG protocol using measured energy data," Energy, Elsevier, vol. 153(C), pages 256-264.
  28. Radhi, Hassan, 2012. "Trade-off between environmental and economic implications of PV systems integrated into the UAE residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2468-2474.
  29. Desideri, Umberto & Proietti, Stefania & Zepparelli, Francesco & Sdringola, Paolo & Bini, Silvia, 2012. "Life Cycle Assessment of a ground-mounted 1778kWp photovoltaic plant and comparison with traditional energy production systems," Applied Energy, Elsevier, vol. 97(C), pages 930-943.
  30. Atmaca, Adem & Atmaca, Nihat, 2016. "Comparative life cycle energy and cost analysis of post-disaster temporary housings," Applied Energy, Elsevier, vol. 171(C), pages 429-443.
  31. Zhang, Lijun & Xia, Xiaohua & Zhang, Jiangfeng, 2014. "Improving energy efficiency of cyclone circuits in coal beneficiation plants by pump-storage systems," Applied Energy, Elsevier, vol. 119(C), pages 306-313.
  32. Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.
  33. Li, Hangxin & Wang, Shengwei & Tang, Rui, 2019. "Robust optimal design of zero/low energy buildings considering uncertainties and the impacts of objective functions," Applied Energy, Elsevier, vol. 254(C).
  34. Santillán Soto, Néstor & García Cueto, O. Rafael & Ojeda Benítez, Sara & Lambert Arista, Alejandro Adolfo, 2014. "Photovoltaic low power systems and their environmental impact:Yuma, Arizona, U.S.A. case study and projections for Mexicali, Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 172-177.
  35. Yu Zhou & Guillermo A. Narsilio & Kenichi Soga & Lu Aye, 2024. "Achieving Pareto Optimum for Hybrid Geothermal–Solar (PV)–Gas Heating Systems: Minimising Lifecycle Cost and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 16(15), pages 1-26, August.
  36. Hee-Won Lim & Ji-Hyeon Kim & Hyeun-Seung Lee & U-Cheul Shin, 2021. "Case Study of Load Matching and Energy Cost for Net-Zero Energy Houses in Korea," Energies, MDPI, vol. 14(19), pages 1-11, October.
  37. Islam, Hamidul & Jollands, Margaret & Setunge, Sujeeva, 2015. "Life cycle assessment and life cycle cost implication of residential buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 129-140.
  38. Poppi, Stefano & Bales, Chris & Heinz, Andreas & Hengel, Franz & Chèze, David & Mojic, Igor & Cialani, Catia, 2016. "Analysis of system improvements in solar thermal and air source heat pump combisystems," Applied Energy, Elsevier, vol. 173(C), pages 606-623.
  39. Mohamed, Ayman & Hasan, Ala & Sirén, Kai, 2014. "Fulfillment of net-zero energy building (NZEB) with four metrics in a single family house with different heating alternatives," Applied Energy, Elsevier, vol. 114(C), pages 385-399.
  40. AlAjmi, Ali & Abou-Ziyan, Hosny & Ghoneim, Adel, 2016. "Achieving annual and monthly net-zero energy of existing building in hot climate," Applied Energy, Elsevier, vol. 165(C), pages 511-521.
  41. Marko Jausovec & Metka Sitar, 2019. "Comparative Evaluation Model Framework for Cost-Optimal Evaluation of Prefabricated Lightweight System Envelopes in the Early Design Phase," Sustainability, MDPI, vol. 11(18), pages 1-24, September.
  42. Greening, Benjamin & Azapagic, Adisa, 2014. "Domestic solar thermal water heating: A sustainable option for the UK?," Renewable Energy, Elsevier, vol. 63(C), pages 23-36.
  43. Sadineni, Suresh B. & Atallah, Fady & Boehm, Robert F., 2012. "Impact of roof integrated PV orientation on the residential electricity peak demand," Applied Energy, Elsevier, vol. 92(C), pages 204-210.
  44. Ismail, Muhammad Imran & Yunus, Nor Alafiza & Hashim, Haslenda, 2021. "Integration of solar heating systems for low-temperature heat demand in food processing industry – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
  45. Berry, Stephen & Davidson, Kathryn, 2016. "Improving the economics of building energy code change: A review of the inputs and assumptions of economic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 157-166.
  46. Lazrak, Amine & Leconte, Antoine & Chèze, David & Fraisse, Gilles & Papillon, Philippe & Souyri, Bernard, 2015. "Numerical and experimental results of a novel and generic methodology for energy performance evaluation of thermal systems using renewable energies," Applied Energy, Elsevier, vol. 158(C), pages 142-156.
  47. Li, Y. & Arulnathan, V. & Heidari, M.D. & Pelletier, N., 2022. "Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
  48. Zhang, Chunbo & Hu, Mingming & Laclau, Benjamin & Garnesson, Thomas & Yang, Xining & Tukker, Arnold, 2021. "Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  49. Onder Kul & Mehmet Nurettin Uğural, 2022. "Comparative Economic and Experimental Assessment of Air Source Heat Pump and Gas-fired boiler: A Case Study from Turkey," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
  50. Long, Linshuang & Ye, Hong & Liu, Minghou, 2016. "A new insight into opaque envelopes in a passive solar house: Properties and roles," Applied Energy, Elsevier, vol. 183(C), pages 685-699.
  51. Kong, Minjin & Hong, Taehoon & Ji, Changyoon & Kang, Hyuna & Lee, Minhyun, 2020. "Development of building driven-energy payback time for energy transition of building with renewable energy systems," Applied Energy, Elsevier, vol. 271(C).
  52. Li, Hangxin & Wang, Shengwei, 2019. "Coordinated optimal design of zero/low energy buildings and their energy systems based on multi-stage design optimization," Energy, Elsevier, vol. 189(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.