Comparative life cycle energy and cost analysis of post-disaster temporary housings
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.03.058
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Eric Korpi & Timo Ala-Risku, 2008. "Life cycle costing: a review of published case studies," Managerial Auditing Journal, Emerald Group Publishing, vol. 23(3), pages 240-261, March.
- Graham Treloar, 1997. "Extracting Embodied Energy Paths from Input-Output Tables: Towards an Input-Output-based Hybrid Energy Analysis Method," Economic Systems Research, Taylor & Francis Journals, vol. 9(4), pages 375-391.
- Cui, Borui & Gao, Dian-ce & Wang, Shengwei & Xue, Xue, 2015. "Effectiveness and life-cycle cost-benefit analysis of active cold storages for building demand management for smart grid applications," Applied Energy, Elsevier, vol. 147(C), pages 523-535.
- Dodoo, Ambrose & Gustavsson, Leif, 2013. "Life cycle primary energy use and carbon footprint of wood-frame conventional and passive houses with biomass-based energy supply," Applied Energy, Elsevier, vol. 112(C), pages 834-842.
- Leckner, Mitchell & Zmeureanu, Radu, 2011. "Life cycle cost and energy analysis of a Net Zero Energy House with solar combisystem," Applied Energy, Elsevier, vol. 88(1), pages 232-241, January.
- Stephan, André & Stephan, Laurent, 2016. "Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings," Applied Energy, Elsevier, vol. 161(C), pages 445-464.
- Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
- Buyle, Matthias & Braet, Johan & Audenaert, Amaryllis, 2013. "Life cycle assessment in the construction sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 379-388.
- Rauf, Abdul & Crawford, Robert H., 2015. "Building service life and its effect on the life cycle embodied energy of buildings," Energy, Elsevier, vol. 79(C), pages 140-148.
- Stephan, André & Stephan, Laurent, 2014. "Reducing the total life cycle energy demand of recent residential buildings in Lebanon," Energy, Elsevier, vol. 74(C), pages 618-637.
- Stephan, André & Crawford, Robert H. & de Myttenaere, Kristel, 2013. "A comprehensive assessment of the life cycle energy demand of passive houses," Applied Energy, Elsevier, vol. 112(C), pages 23-34.
- Dodoo, Ambrose & Gustavsson, Leif & Sathre, Roger, 2012. "Effect of thermal mass on life cycle primary energy balances of a concrete- and a wood-frame building," Applied Energy, Elsevier, vol. 92(C), pages 462-472.
- Chen, T.Y & Burnett, J & Chau, C.K, 2001. "Analysis of embodied energy use in the residential building of Hong Kong," Energy, Elsevier, vol. 26(4), pages 323-340.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gaetano Bertino & Gloria Rose & Johannes Kisser, 2021. "Drivers and Barriers for Implementation and International Transferability of Sustainable Pop-up Living Systems," Circular Economy and Sustainability, Springer, vol. 1(3), pages 935-965, November.
- Yurou Tong & Hui Yang & Li Bao & Baoxia Guo & Yanzhuo Shi & Congcong Wang, 2022. "Analysis of Thermal Insulation Thickness for a Container House in the Yanqing Zone of the Beijing 2022 Olympic and Paralympic Winter Games," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
- Merve Serter & Gulden Gumusburun Ayalp, 2024. "A Holistic Analysis on Risks of Post-Disaster Reconstruction Using RStudio Bibliometrix," Sustainability, MDPI, vol. 16(21), pages 1-33, October.
- Abdrahman Alsabry & Krzysztof Szymański & Bartosz Michalak, 2023. "Energy, Economic and Environmental Analysis of Alternative, High-Efficiency Sources of Heat and Energy for Multi-Family Residential Buildings in Order to Increase Energy Efficiency in Poland," Energies, MDPI, vol. 16(6), pages 1-20, March.
- Santika, Wayan G. & Anisuzzaman, M. & Simsek, Yeliz & Bahri, Parisa A. & Shafiullah, G.M. & Urmee, Tania, 2020. "Implications of the Sustainable Development Goals on national energy demand: The case of Indonesia," Energy, Elsevier, vol. 196(C).
- Krzysztof Grygierek & Joanna Ferdyn-Grygierek & Anna Gumińska & Łukasz Baran & Magdalena Barwa & Kamila Czerw & Paulina Gowik & Klaudia Makselan & Klaudia Potyka & Agnes Psikuta, 2020. "Energy and Environmental Analysis of Single-Family Houses Located in Poland," Energies, MDPI, vol. 13(11), pages 1-25, May.
- Abdrahman Alsabry & Krzysztof Szymański & Beata Backiel-Brzozowska, 2024. "Analysis of the Energy, Environmental and Economic Efficiency of Multi-Family Residential Buildings in Poland," Energies, MDPI, vol. 17(9), pages 1-32, April.
- Joanna Ferdyn-Grygierek & Krzysztof Grygierek, 2017. "Multi-Variable Optimization of Building Thermal Design Using Genetic Algorithms," Energies, MDPI, vol. 10(10), pages 1-20, October.
- Gaetano Bertino & Tatjana Fischer & Gustav Puhr & Guenter Langergraber & Doris Österreicher, 2019. "Framework Conditions and Strategies for Pop-Up Environments in Urban Planning," Sustainability, MDPI, vol. 11(24), pages 1-30, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
- Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
- Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
- André Stephan & Robert H. Crawford & Victor Bunster & Georgia Warren‐Myers & Sareh Moosavi, 2022. "Towards a multiscale framework for modeling and improving the life cycle environmental performance of built stocks," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1195-1217, August.
- Crawford, Robert H. & Bartak, Erika L. & Stephan, André & Jensen, Christopher A., 2016. "Evaluating the life cycle energy benefits of energy efficiency regulations for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 435-451.
- Hossein Omrany & Veronica Soebarto & Ehsan Sharifi & Ali Soltani, 2020. "Application of Life Cycle Energy Assessment in Residential Buildings: A Critical Review of Recent Trends," Sustainability, MDPI, vol. 12(1), pages 1-30, January.
- Stephan, André & Stephan, Laurent, 2016. "Life cycle energy and cost analysis of embodied, operational and user-transport energy reduction measures for residential buildings," Applied Energy, Elsevier, vol. 161(C), pages 445-464.
- Stephan, André & Crawford, Robert H., 2016. "The relationship between house size and life cycle energy demand: Implications for energy efficiency regulations for buildings," Energy, Elsevier, vol. 116(P1), pages 1158-1171.
- Stephan, André & Stephan, Laurent, 2020. "Achieving net zero life cycle primary energy and greenhouse gas emissions apartment buildings in a Mediterranean climate," Applied Energy, Elsevier, vol. 280(C).
- Echarri-Iribarren, Victor & Echarri-Iribarren, Fernando & Rizo-Maestre, Carlos, 2019. "Ceramic panels versus aluminium in buildings: Energy consumption and environmental impact assessment with a new methodology," Applied Energy, Elsevier, vol. 233, pages 959-974.
- Kong, Minjin & Hong, Taehoon & Ji, Changyoon & Kang, Hyuna & Lee, Minhyun, 2020. "Development of building driven-energy payback time for energy transition of building with renewable energy systems," Applied Energy, Elsevier, vol. 271(C).
- Copiello, Sergio, 2017. "Building energy efficiency: A research branch made of paradoxes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1064-1076.
- Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
- Helena Monteiro & Fausto Freire & John E. Fernández, 2020. "Life-Cycle Assessment of Alternative Envelope Construction for a New House in South-Western Europe: Embodied and Operational Magnitude," Energies, MDPI, vol. 13(16), pages 1-20, August.
- Zhang, Chunbo & Hu, Mingming & Laclau, Benjamin & Garnesson, Thomas & Yang, Xining & Tukker, Arnold, 2021. "Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Huang, Lizhen & Krigsvoll, Guri & Johansen, Fred & Liu, Yongping & Zhang, Xiaoling, 2018. "Carbon emission of global construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1906-1916.
- Li, Clyde Zhengdao & Lai, Xulu & Xiao, Bing & Tam, Vivian W.Y. & Guo, Shan & Zhao, Yiyu, 2020. "A holistic review on life cycle energy of buildings: An analysis from 2009 to 2019," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Venkatraj, V. & Dixit, M.K., 2021. "Life cycle embodied energy analysis of higher education buildings: A comparison between different LCI methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Dixit, Manish K., 2017. "Embodied energy analysis of building materials: An improved IO-based hybrid method using sectoral disaggregation," Energy, Elsevier, vol. 124(C), pages 46-58.
- Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.
More about this item
Keywords
Post-disaster housings; Prefabricated; Container; Life cycle cost assessment; Life cycle energy assessment;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:171:y:2016:i:c:p:429-443. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.