My bibliography
Save this item
A seasonal hybrid procedure for electricity demand forecasting in China
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- H. Murat Ertuğrul & B. Oray Güngör & Uğur Soytaş, 2021.
"The Effect of the COVID-19 Outbreak on the Turkish Diesel Consumption Volatility Dynamics,"
Energy RESEARCH LETTERS, Asia-Pacific Applied Economics Association, vol. 1(1), pages 1-4.
- Ertugrul, H. Murat & Güngör, B. Oray & Soytas, Ugur, 2020. "The Effect of Covid-19 Outbreak on Turkish Diesel Consumption Volatility Dynamics," MPRA Paper 110166, University Library of Munich, Germany, revised 2020.
- Ru Hou & Yi Yang & Qingcong Yuan & Yanhua Chen, 2019. "Research and Application of Hybrid Wind-Energy Forecasting Models Based on Cuckoo Search Optimization," Energies, MDPI, vol. 12(19), pages 1-17, September.
- Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables," Applied Energy, Elsevier, vol. 140(C), pages 385-394.
- Wu, Lifeng & Gao, Xiaohui & Xiao, Yanli & Yang, Yingjie & Chen, Xiangnan, 2018. "Using a novel multi-variable grey model to forecast the electricity consumption of Shandong Province in China," Energy, Elsevier, vol. 157(C), pages 327-335.
- Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
- Jiang, Ping & Liu, Feng & Song, Yiliao, 2017. "A hybrid forecasting model based on date-framework strategy and improved feature selection technology for short-term load forecasting," Energy, Elsevier, vol. 119(C), pages 694-709.
- An, Ning & Zhao, Weigang & Wang, Jianzhou & Shang, Duo & Zhao, Erdong, 2013. "Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting," Energy, Elsevier, vol. 49(C), pages 279-288.
- Wang, Zheng-Xin & Li, Qin & Pei, Ling-Ling, 2018. "A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors," Energy, Elsevier, vol. 154(C), pages 522-534.
- Xuejun Li & Minghua Jiang & Deyu Cai & Wenqin Song & Yalu Sun, 2024. "A Hybrid Forecasting Model for Electricity Demand in Sustainable Power Systems Based on Support Vector Machine," Energies, MDPI, vol. 17(17), pages 1-16, September.
- Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
- Apadula, Francesco & Bassini, Alessandra & Elli, Alberto & Scapin, Simone, 2012. "Relationships between meteorological variables and monthly electricity demand," Applied Energy, Elsevier, vol. 98(C), pages 346-356.
- Maria Jesus Herrerias and Eric Girardin, 2013.
"Seasonal Patterns of Energy in China,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
- Maria J. Herrerias & Eric Girardin, 2013. "Seasonal Patterns of Energy in China," Post-Print hal-01499617, HAL.
- Wang, Zheng-Xin & Wang, Zhi-Wei & Li, Qin, 2020. "Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors," Energy, Elsevier, vol. 200(C).
- Hajirahimi, Zahra & Khashei, Mehdi & Etemadi, Sepideh, 2022. "A novel class of reliability-based parallel hybridization (RPH) models for time series forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
- Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
- Wai-Ming To & Peter Ka Chun Lee & Tsz-Ming Lai, 2017. "Modeling of Monthly Residential and Commercial Electricity Consumption Using Nonlinear Seasonal Models—The Case of Hong Kong," Energies, MDPI, vol. 10(7), pages 1-16, June.
- Zhao, Weigang & Wang, Jianzhou & Lu, Haiyan, 2014. "Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model," Omega, Elsevier, vol. 45(C), pages 80-91.
- Chahkoutahi, Fatemeh & Khashei, Mehdi, 2017. "A seasonal direct optimal hybrid model of computational intelligence and soft computing techniques for electricity load forecasting," Energy, Elsevier, vol. 140(P1), pages 988-1004.
- Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
- Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
- Güngör, Bekir Oray & Ertuğrul, H. Murat & Soytaş, Uğur, 2021. "Impact of Covid-19 outbreak on Turkish gasoline consumption," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Yu, Feng & Xu, Xiaozhong, 2014. "A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network," Applied Energy, Elsevier, vol. 134(C), pages 102-113.
- Wang, Chi-hsiang & Grozev, George & Seo, Seongwon, 2012. "Decomposition and statistical analysis for regional electricity demand forecasting," Energy, Elsevier, vol. 41(1), pages 313-325.
- Safari, Ali & Davallou, Maryam, 2018. "Oil price forecasting using a hybrid model," Energy, Elsevier, vol. 148(C), pages 49-58.
- Tang, Ling & Yu, Lean & He, Kaijian, 2014. "A novel data-characteristic-driven modeling methodology for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 128(C), pages 1-14.
- Tang, Ling & Yu, Lean & Wang, Shuai & Li, Jianping & Wang, Shouyang, 2012. "A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting," Applied Energy, Elsevier, vol. 93(C), pages 432-443.
- Weide Li & Xuan Yang & Hao Li & Lili Su, 2017. "Hybrid Forecasting Approach Based on GRNN Neural Network and SVR Machine for Electricity Demand Forecasting," Energies, MDPI, vol. 10(1), pages 1-17, January.
- Ali K k & Erg n Y kseltan & Mustafa Hekimo lu & Esra Agca Aktunc & Ahmet Y cekaya & Ay e Bilge, 2022. "Forecasting Hourly Electricity Demand Under COVID-19 Restrictions," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 73-85.
- Aneeque A. Mir & Mohammed Alghassab & Kafait Ullah & Zafar A. Khan & Yuehong Lu & Muhammad Imran, 2020. "A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons," Sustainability, MDPI, vol. 12(15), pages 1-35, July.
- Herrera, Gabriel Paes & Constantino, Michel & Tabak, Benjamin Miranda & Pistori, Hemerson & Su, Jen-Je & Naranpanawa, Athula, 2019. "Long-term forecast of energy commodities price using machine learning," Energy, Elsevier, vol. 179(C), pages 214-221.
- Tulin Guzel & Hakan Cinar & Mehmet Nabi Cenet & Kamil Doruk Oguz & Ahmet Yucekaya & Mustafa Hekimoglu, 2023. "A Framework to Forecast Electricity Consumption of Meters using Automated Ranking and Data Preprocessing," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 179-193, September.
- Alobaidi, Mohammad H. & Chebana, Fateh & Meguid, Mohamed A., 2018. "Robust ensemble learning framework for day-ahead forecasting of household based energy consumption," Applied Energy, Elsevier, vol. 212(C), pages 997-1012.
- Yu-Sheng Kao & Kazumitsu Nawata & Chi-Yo Huang, 2020. "Predicting Primary Energy Consumption Using Hybrid ARIMA and GA-SVR Based on EEMD Decomposition," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
- Atul Anand & L. Suganthi, 2017. "Forecasting of Electricity Demand by Hybrid ANN-PSO Models," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 6(4), pages 66-83, October.
- Li, Chuan & Tao, Ying & Ao, Wengang & Yang, Shuai & Bai, Yun, 2018. "Improving forecasting accuracy of daily enterprise electricity consumption using a random forest based on ensemble empirical mode decomposition," Energy, Elsevier, vol. 165(PB), pages 1220-1227.
- Yukseltan, Ergun & Yucekaya, Ahmet & Bilge, Ayse Humeyra, 2017. "Forecasting electricity demand for Turkey: Modeling periodic variations and demand segregation," Applied Energy, Elsevier, vol. 193(C), pages 287-296.