IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v87y2010i10p3011-3017.html
   My bibliography  Save this item

Estimating daily global solar radiation by day of year in China

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yujiang He & Xianbiao Bu, 2020. "Performance of Hybrid Single Well Enhanced Geothermal System and Solar Energy for Buildings Heating," Energies, MDPI, vol. 13(10), pages 1-10, May.
  2. Baser, Furkan & Demirhan, Haydar, 2017. "A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation," Energy, Elsevier, vol. 123(C), pages 229-240.
  3. Wang, Lunche & Gong, Wei & Ma, Yingying & Hu, Bo & Wang, Wenling & Zhang, Miao, 2013. "Analysis of ultraviolet radiation in Central China from observation and estimation," Energy, Elsevier, vol. 59(C), pages 764-774.
  4. Pan, Tao & Wu, Shaohong & Dai, Erfu & Liu, Yujie, 2013. "Estimating the daily global solar radiation spatial distribution from diurnal temperature ranges over the Tibetan Plateau in China," Applied Energy, Elsevier, vol. 107(C), pages 384-393.
  5. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
  6. Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2019. "Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China," Renewable Energy, Elsevier, vol. 135(C), pages 984-1003.
  7. Dos Santos, Cícero Manoel & De Souza, José Leonaldo & Ferreira Junior, Ricardo Araujo & Tiba, Chigueru & de Melo, Rinaldo Oliveira & Lyra, Gustavo Bastos & Teodoro, Iêdo & Lyra, Guilherme Bastos & Lem, 2014. "On modeling global solar irradiation using air temperature for Alagoas State, Northeastern Brazil," Energy, Elsevier, vol. 71(C), pages 388-398.
  8. Mohamed A. Ali & Ashraf Elsayed & Islam Elkabani & Mohammad Akrami & M. Elsayed Youssef & Gasser E. Hassan, 2023. "Optimizing Artificial Neural Networks for the Accurate Prediction of Global Solar Radiation: A Performance Comparison with Conventional Methods," Energies, MDPI, vol. 16(17), pages 1-30, August.
  9. Li, Shuai & Ma, Hongjie & Li, Weiyi, 2017. "Typical solar radiation year construction using k-means clustering and discrete-time Markov chain," Applied Energy, Elsevier, vol. 205(C), pages 720-731.
  10. Zang, Haixiang & Xu, Qingshan & Bian, Haihong, 2012. "Generation of typical solar radiation data for different climates of China," Energy, Elsevier, vol. 38(1), pages 236-248.
  11. Mohanty, Sthitapragyan & Patra, Prashanta Kumar & Sahoo, Sudhansu Sekhar, 2016. "Prediction and application of solar radiation with soft computing over traditional and conventional approach – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 778-796.
  12. Pochont, Nitin Ralph & Sekhar Y, Raja, 2024. "Local centric energy estimate model for clean and affordable power generation in a solar integrated passenger vehicle," Renewable Energy, Elsevier, vol. 222(C).
  13. Kocifaj, Miroslav & Kómar, Ladislav, 2016. "Modeling diffuse irradiance under arbitrary and homogeneous skies: Comparison and validation," Applied Energy, Elsevier, vol. 166(C), pages 117-127.
  14. Bayrakçı, Hilmi Cenk & Demircan, Cihan & Keçebaş, Ali, 2018. "The development of empirical models for estimating global solar radiation on horizontal surface: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2771-2782.
  15. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
  16. Mohamed A. Ali & Ashraf Elsayed & Islam Elkabani & Mohammad Akrami & M. Elsayed Youssef & Gasser E. Hassan, 2024. "Artificial Intelligence-Based Improvement of Empirical Methods for Accurate Global Solar Radiation Forecast: Development and Comparative Analysis," Energies, MDPI, vol. 17(17), pages 1-42, August.
  17. Hassan, Gasser E. & Youssef, M. Elsayed & Mohamed, Zahraa E. & Ali, Mohamed A. & Hanafy, Ahmed A., 2016. "New Temperature-based Models for Predicting Global Solar Radiation," Applied Energy, Elsevier, vol. 179(C), pages 437-450.
  18. Enrique A. Enríquez-Velásquez & Victor H. Benitez & Sergey G. Obukhov & Luis C. Félix-Herrán & Jorge de-J. Lozoya-Santos, 2020. "Estimation of Solar Resource Based on Meteorological and Geographical Data: Sonora State in Northwestern Territory of Mexico as Case Study," Energies, MDPI, vol. 13(24), pages 1-41, December.
  19. Zhang, Jianyuan & Zhao, Li & Deng, Shuai & Xu, Weicong & Zhang, Ying, 2017. "A critical review of the models used to estimate solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 314-329.
  20. Yao, Wanxiang & Zhang, Kang & Cao, Weixue & Li, Xianli & Wang, Yan & Wang, Xiao, 2022. "Research on the correlation between solar radiation and sky luminance based on the principle of photothermal integration," Renewable Energy, Elsevier, vol. 194(C), pages 1326-1342.
  21. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
  22. Zhiyong Tian & Bengt Perers & Simon Furbo & Jianhua Fan & Jie Deng & Janne Dragsted, 2018. "A Comprehensive Approach for Modelling Horizontal Diffuse Radiation, Direct Normal Irradiance and Total Tilted Solar Radiation Based on Global Radiation under Danish Climate Conditions," Energies, MDPI, vol. 11(5), pages 1-19, May.
  23. Wang, Lunche & Gong, Wei & Li, Chen & Lin, Aiwen & Hu, Bo & Ma, Yingying, 2013. "Measurement and estimation of photosynthetically active radiation from 1961 to 2011 in Central China," Applied Energy, Elsevier, vol. 111(C), pages 1010-1017.
  24. Kaplani, E. & Kaplanis, S. & Mondal, S., 2018. "A spatiotemporal universal model for the prediction of the global solar radiation based on Fourier series and the site altitude," Renewable Energy, Elsevier, vol. 126(C), pages 933-942.
  25. Anton Vernet & Alexandre Fabregat, 2023. "Evaluation of Empirical Daily Solar Radiation Models for the Northeast Coast of the Iberian Peninsula," Energies, MDPI, vol. 16(6), pages 1-18, March.
  26. Cao, Fei & Li, Huashan & Yang, Tian & Li, Yan & Zhu, Tianyu & Zhao, Liang, 2017. "Evaluation of diffuse solar radiation models in Northern China: New model establishment and radiation sources comparison," Renewable Energy, Elsevier, vol. 103(C), pages 708-720.
  27. Gandoman, Foad H. & Raeisi, Fatima & Ahmadi, Abdollah, 2016. "A literature review on estimating of PV-array hourly power under cloudy weather conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 579-592.
  28. Rohani, Abbas & Taki, Morteza & Abdollahpour, Masoumeh, 2018. "A novel soft computing model (Gaussian process regression with K-fold cross validation) for daily and monthly solar radiation forecasting (Part: I)," Renewable Energy, Elsevier, vol. 115(C), pages 411-422.
  29. Hassan, Muhammed A. & Khalil, A. & Kaseb, S. & Kassem, M.A., 2017. "Exploring the potential of tree-based ensemble methods in solar radiation modeling," Applied Energy, Elsevier, vol. 203(C), pages 897-916.
  30. Amrouche, Badia & Le Pivert, Xavier, 2014. "Artificial neural network based daily local forecasting for global solar radiation," Applied Energy, Elsevier, vol. 130(C), pages 333-341.
  31. Avijit Karmakar & Pradip Kumar Sadhu & Soumya Das, 2021. "Performance analysis of standalone photovoltaic power generation in different load conditions in India," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2021(1), pages 121-142.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.