IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v300y2021ics0306261921008072.html
   My bibliography  Save this item

SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jiaan Zhang & Yan Hao & Ruiqing Fan & Zhenzhen Wang, 2023. "An Ultra-Short-Term PV Power Forecasting Method for Changeable Weather Based on Clustering and Signal Decomposition," Energies, MDPI, vol. 16(7), pages 1-15, March.
  2. Tziolis, Georgios & Spanias, Chrysovalantis & Theodoride, Maria & Theocharides, Spyros & Lopez-Lorente, Javier & Livera, Andreas & Makrides, George & Georghiou, George E., 2023. "Short-term electric net load forecasting for solar-integrated distribution systems based on Bayesian neural networks and statistical post-processing," Energy, Elsevier, vol. 271(C).
  3. Li, Naiqing & Li, Longhao & Zhang, Fan & Jiao, Ticao & Wang, Shuang & Liu, Xuefeng & Wu, Xinghua, 2023. "Research on short-term photovoltaic power prediction based on multi-scale similar days and ESN-KELM dual core prediction model," Energy, Elsevier, vol. 277(C).
  4. Liu, Jingxuan & Zang, Haixiang & Zhang, Fengchun & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A hybrid meteorological data simulation framework based on time-series generative adversarial network for global daily solar radiation estimation," Renewable Energy, Elsevier, vol. 219(P1).
  5. Negri, Simone & Giani, Federico & Blasuttigh, Nicola & Massi Pavan, Alessandro & Mellit, Adel & Tironi, Enrico, 2022. "Combined model predictive control and ANN-based forecasters for jointly acting renewable self-consumers: An environmental and economical evaluation," Renewable Energy, Elsevier, vol. 198(C), pages 440-454.
  6. Cao, Yisheng & Liu, Gang & Luo, Donghua & Bavirisetti, Durga Prasad & Xiao, Gang, 2023. "Multi-timescale photovoltaic power forecasting using an improved Stacking ensemble algorithm based LSTM-Informer model," Energy, Elsevier, vol. 283(C).
  7. Wang, Min & Rao, Congjun & Xiao, Xinping & Hu, Zhuo & Goh, Mark, 2024. "Efficient shrinkage temporal convolutional network model for photovoltaic power prediction," Energy, Elsevier, vol. 297(C).
  8. Wu, Zheng & Zhang, Yue & Dong, Ze, 2024. "NOx concentration prediction based on multi-channel fused spectral temporal graph neural network in coal-fired power plants," Energy, Elsevier, vol. 305(C).
  9. Wang, Yuqing & Fu, Wenjie & Wang, Junlong & Zhen, Zhao & Wang, Fei, 2024. "Ultra-short-term distributed PV power forecasting for virtual power plant considering data-scarce scenarios," Applied Energy, Elsevier, vol. 373(C).
  10. Yongning Zhang & Xiaoying Ren & Fei Zhang & Yulei Liu & Jierui Li, 2024. "A Deep Learning-Based Dual-Scale Hybrid Model for Ultra-Short-Term Photovoltaic Power Forecasting," Sustainability, MDPI, vol. 16(17), pages 1-22, August.
  11. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
  12. Khan, Zulfiqar Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2023. "Dual stream network with attention mechanism for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 338(C).
  13. Yang, Mao & Zhao, Meng & Huang, Dawei & Su, Xin, 2022. "A composite framework for photovoltaic day-ahead power prediction based on dual clustering of dynamic time warping distance and deep autoencoder," Renewable Energy, Elsevier, vol. 194(C), pages 659-673.
  14. Li, Ke & Mu, Yuchen & Yang, Fan & Wang, Haiyang & Yan, Yi & Zhang, Chenghui, 2023. "A novel short-term multi-energy load forecasting method for integrated energy system based on feature separation-fusion technology and improved CNN," Applied Energy, Elsevier, vol. 351(C).
  15. Valerio Lo Brano & Stefania Guarino & Alessandro Buscemi & Marina Bonomolo, 2022. "Development of Neural Network Prediction Models for the Energy Producibility of a Parabolic Dish: A Comparison with the Analytical Approach," Energies, MDPI, vol. 15(24), pages 1-27, December.
  16. Su, Qingyu & Chen, Cong & Huang, Xin & Li, Jian, 2022. "Interval TrendRank method for grid node importance assessment considering new energy," Applied Energy, Elsevier, vol. 324(C).
  17. Yu, Hanxin & Chen, Shanlin & Chu, Yinghao & Li, Mengying & Ding, Yueming & Cui, Rongxi & Zhao, Xin, 2024. "Self-attention mechanism to enhance the generalizability of data-driven time-series prediction: A case study of intra-hour power forecasting of urban distributed photovoltaic systems," Applied Energy, Elsevier, vol. 374(C).
  18. Zaohui Kang & Jizhong Xue & Chun Sing Lai & Yu Wang & Haoliang Yuan & Fangyuan Xu, 2023. "Vision Transformer-Based Photovoltaic Prediction Model," Energies, MDPI, vol. 16(12), pages 1-14, June.
  19. Yin, Linfei & Cao, Xinghui & Liu, Dongduan, 2023. "Weighted fully-connected regression networks for one-day-ahead hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 332(C).
  20. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
  21. Perera, Maneesha & De Hoog, Julian & Bandara, Kasun & Senanayake, Damith & Halgamuge, Saman, 2024. "Day-ahead regional solar power forecasting with hierarchical temporal convolutional neural networks using historical power generation and weather data," Applied Energy, Elsevier, vol. 361(C).
  22. Keyong Hu & Zheyi Fu & Chunyuan Lang & Wenjuan Li & Qin Tao & Ben Wang, 2024. "Short-Term Photovoltaic Power Generation Prediction Based on Copula Function and CNN-CosAttention-Transformer," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
  23. liu, Qian & li, Yulin & jiang, Hang & chen, Yilin & zhang, Jiang, 2024. "Short-term photovoltaic power forecasting based on multiple mode decomposition and parallel bidirectional long short term combined with convolutional neural networks," Energy, Elsevier, vol. 286(C).
  24. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
  25. Kim, Jimin & Obregon, Josue & Park, Hoonseok & Jung, Jae-Yoon, 2024. "Multi-step photovoltaic power forecasting using transformer and recurrent neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
  26. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
  27. Liu, Jiefeng & Zhang, Zhenhao & Fan, Xianhao & Zhang, Yiyi & Wang, Jiaqi & Zhou, Ke & Liang, Shuo & Yu, Xiaoyong & Zhang, Wei, 2022. "Power system load forecasting using mobility optimization and multi-task learning in COVID-19," Applied Energy, Elsevier, vol. 310(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.