IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p5940-d1433660.html
   My bibliography  Save this article

Short-Term Photovoltaic Power Generation Prediction Based on Copula Function and CNN-CosAttention-Transformer

Author

Listed:
  • Keyong Hu

    (School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China
    Mobile Health Management System Engineering Research Center of the Ministry of Education, Hangzhou 311121, China)

  • Zheyi Fu

    (School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China)

  • Chunyuan Lang

    (School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China)

  • Wenjuan Li

    (School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China
    Mobile Health Management System Engineering Research Center of the Ministry of Education, Hangzhou 311121, China)

  • Qin Tao

    (School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China
    Mobile Health Management System Engineering Research Center of the Ministry of Education, Hangzhou 311121, China)

  • Ben Wang

    (School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China
    Mobile Health Management System Engineering Research Center of the Ministry of Education, Hangzhou 311121, China)

Abstract

The intermittent nature of solar energy poses significant challenges to the integration of photovoltaic (PV) power generation into the electrical grid. Consequently, the precise forecasting of PV power output becomes essential for efficient real-time power system dispatch. To meet this demand, this paper proposes a deep learning model, the CA-Transformer, specifically designed for PV power output prediction. To overcome the shortcomings of traditional correlation coefficient methods in dealing with nonlinear relationships, this study utilizes the Copula function. This approach allows for a more flexible and accurate determination of correlations within time series data, enabling the selection of features that exhibit a high degree of correlation with PV power output. Given the unique data characteristics of PV power output, the proposed model employs a 1D-CNN model to identify local patterns and trends within the time series data. Simultaneously, it implements a cosine similarity attention mechanism to detect long-range dependencies within the time series. It then leverages a parallel structure of a 1D-CNN and a cosine similarity attention mechanism to capture patterns across varying time scales and integrate them. In order to show the effectiveness of the model proposed in this study, its prediction results were compared with those of other models (LSTM and Transformer). The experimental results demonstrate that our model outperforms in terms of PV power output prediction, thereby offering a robust tool for the intelligent management of PV power generation.

Suggested Citation

  • Keyong Hu & Zheyi Fu & Chunyuan Lang & Wenjuan Li & Qin Tao & Ben Wang, 2024. "Short-Term Photovoltaic Power Generation Prediction Based on Copula Function and CNN-CosAttention-Transformer," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5940-:d:1433660
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/5940/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/5940/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Halabi, Laith M. & Mekhilef, Saad & Hossain, Monowar, 2018. "Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation," Applied Energy, Elsevier, vol. 213(C), pages 247-261.
    2. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    3. Dai, Yeming & Wang, Yanxin & Leng, Mingming & Yang, Xinyu & Zhou, Qiong, 2022. "LOWESS smoothing and Random Forest based GRU model: A short-term photovoltaic power generation forecasting method," Energy, Elsevier, vol. 256(C).
    4. Korkmaz, Deniz, 2021. "SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 300(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. liu, Qian & li, Yulin & jiang, Hang & chen, Yilin & zhang, Jiang, 2024. "Short-term photovoltaic power forecasting based on multiple mode decomposition and parallel bidirectional long short term combined with convolutional neural networks," Energy, Elsevier, vol. 286(C).
    2. Khan, Zulfiqar Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2023. "Dual stream network with attention mechanism for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 338(C).
    3. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    4. Lan, Puzhe & Han, Dong & Xu, Xiaoyuan & Yan, Zheng & Ren, Xijun & Xia, Shiwei, 2022. "Data-driven state estimation of integrated electric-gas energy system," Energy, Elsevier, vol. 252(C).
    5. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    6. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    7. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. Negri, Simone & Giani, Federico & Blasuttigh, Nicola & Massi Pavan, Alessandro & Mellit, Adel & Tironi, Enrico, 2022. "Combined model predictive control and ANN-based forecasters for jointly acting renewable self-consumers: An environmental and economical evaluation," Renewable Energy, Elsevier, vol. 198(C), pages 440-454.
    10. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    11. Mahfuzur Rahman & Solaiman Chowdhury & Mohammad Shorfuzzaman & Mohammad Kamal Hossain & Mohammad Hammoudeh, 2023. "Peer-to-Peer Power Energy Trading in Blockchain Using Efficient Machine Learning Model," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    12. Fernández-Blanco, Ricardo & Morales, Juan Miguel & Pineda, Salvador, 2021. "Forecasting the price-response of a pool of buildings via homothetic inverse optimization," Applied Energy, Elsevier, vol. 290(C).
    13. Khan, Zulfiqar Ahmad & Khan, Shabbir Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2024. "DSPM: Dual sequence prediction model for efficient energy management in micro-grid," Applied Energy, Elsevier, vol. 356(C).
    14. Olubayo M. Babatunde & Josiah L. Munda & Yskandar Hamam, 2020. "Exploring the Potentials of Artificial Neural Network Trained with Differential Evolution for Estimating Global Solar Radiation," Energies, MDPI, vol. 13(10), pages 1-18, May.
    15. Elham Alzain & Shaha Al-Otaibi & Theyazn H. H. Aldhyani & Ali Saleh Alshebami & Mohammed Amin Almaiah & Mukti E. Jadhav, 2023. "Revolutionizing Solar Power Production with Artificial Intelligence: A Sustainable Predictive Model," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    16. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    17. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "Photovoltaic power forecasting based LSTM-Convolutional Network," Energy, Elsevier, vol. 189(C).
    19. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    20. Hossein Moayedi & Amir Mosavi, 2021. "An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework," Energies, MDPI, vol. 14(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:5940-:d:1433660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.