IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v275y2020ics0306261920308308.html
   My bibliography  Save this item

Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Serrano, José Ramón & García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago, 2021. "High efficiency two stroke opposed piston engine for plug-in hybrid electric vehicle applications: Evaluation under homologation and real driving conditions," Applied Energy, Elsevier, vol. 282(PA).
  2. Liu, Yuechen Sophia & Tayarani, Mohammad & Gao, H. Oliver, 2022. "An activity-based travel and charging behavior model for simulating battery electric vehicle charging demand," Energy, Elsevier, vol. 258(C).
  3. Liu, Xiaochen & Fu, Zhi & Qiu, Siyuan & Zhang, Tao & Li, Shaojie & Yang, Zhi & Liu, Xiaohua & Jiang, Yi, 2023. "Charging private electric vehicles solely by photovoltaics: A battery-free direct-current microgrid with distributed charging strategy," Applied Energy, Elsevier, vol. 341(C).
  4. Mittelviefhaus, Moritz & Pareschi, Giacomo & Allan, James & Georges, Gil & Boulouchos, Konstantinos, 2021. "Optimal investment and scheduling of residential multi-energy systems including electric mobility: A cost-effective approach to climate change mitigation," Applied Energy, Elsevier, vol. 301(C).
  5. Tikka, Ville & Haapaniemi, Jouni & Räisänen, Otto & Honkapuro, Samuli, 2022. "Convolutional neural networks in estimating the spatial distribution of electric vehicles to support electricity grid planning," Applied Energy, Elsevier, vol. 328(C).
  6. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
  7. Hipolito, F. & Vandet, C.A. & Rich, J., 2022. "Charging, steady-state SoC and energy storage distributions for EV fleets," Applied Energy, Elsevier, vol. 317(C).
  8. Haihong Bian & Quance Ren & Zhengyang Guo & Chengang Zhou & Zhiyuan Zhang & Ximeng Wang, 2024. "Predictive Model for EV Charging Load Incorporating Multimodal Travel Behavior and Microscopic Traffic Simulation," Energies, MDPI, vol. 17(11), pages 1-23, May.
  9. Einolander, Johannes & Lahdelma, Risto, 2022. "Multivariate copula procedure for electric vehicle charging event simulation," Energy, Elsevier, vol. 238(PA).
  10. Krzysztof Zagrajek, 2021. "A Survey Data Approach for Determining the Probability Values of Vehicle-to-Grid Service Provision," Energies, MDPI, vol. 14(21), pages 1-38, November.
  11. Einolander, Johannes & Lahdelma, Risto, 2022. "Explicit demand response potential in electric vehicle charging networks: Event-based simulation based on the multivariate copula procedure," Energy, Elsevier, vol. 256(C).
  12. Zhou, Yuekuan & Liu, Xiaohua & Zhao, Qianchuan, 2024. "A stochastic vehicle schedule model for demand response and grid flexibility in a renewable-building-e-transportation-microgrid," Renewable Energy, Elsevier, vol. 221(C).
  13. Lukáš Dvořáček & Martin Horák & Michaela Valentová & Jaroslav Knápek, 2020. "Optimization of Electric Vehicle Charging Points Based on Efficient Use of Chargers and Providing Private Charging Spaces," Energies, MDPI, vol. 13(24), pages 1-28, December.
  14. Simolin, Toni & Rauma, Kalle & Viri, Riku & Mäkinen, Johanna & Rautiainen, Antti & Järventausta, Pertti, 2021. "Charging powers of the electric vehicle fleet: Evolution and implications at commercial charging sites," Applied Energy, Elsevier, vol. 303(C).
  15. Weiss, Olga & Pareschi, Giacomo & Georges, Gil & Boulouchos, Konstantinos, 2021. "The Swiss energy transition: Policies to address the Energy Trilemma," Energy Policy, Elsevier, vol. 148(PA).
  16. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
  17. Zhang, Lei & Huang, Zhijia & Wang, Zhenpo & Li, Xiaohui & Sun, Fengchun, 2024. "An urban charging load forecasting model based on trip chain model for private passenger electric vehicles: A case study in Beijing," Energy, Elsevier, vol. 299(C).
  18. Liu, Xiaochen & Fu, Zhi & Qiu, Siyuan & Li, Shaojie & Zhang, Tao & Liu, Xiaohua & Jiang, Yi, 2023. "Building-centric investigation into electric vehicle behavior: A survey-based simulation method for charging system design," Energy, Elsevier, vol. 271(C).
  19. Graham Town & Seyedfoad Taghizadeh & Sara Deilami, 2022. "Review of Fast Charging for Electrified Transport: Demand, Technology, Systems, and Planning," Energies, MDPI, vol. 15(4), pages 1-30, February.
  20. Krzysztof Zagrajek & Józef Paska & Łukasz Sosnowski & Konrad Gobosz & Konrad Wróblewski, 2021. "Framework for the Introduction of Vehicle-to-Grid Technology into the Polish Electricity Market," Energies, MDPI, vol. 14(12), pages 1-30, June.
  21. Strobel, Leo & Schlund, Jonas & Pruckner, Marco, 2022. "Joint analysis of regional and national power system impacts of electric vehicles—A case study for Germany on the county level in 2030," Applied Energy, Elsevier, vol. 315(C).
  22. Rüdisüli, Martin & Bach, Christian & Bauer, Christian & Beloin-Saint-Pierre, Didier & Elber, Urs & Georges, Gil & Limpach, Robert & Pareschi, Giacomo & Kannan, Ramachandran & Teske, Sinan L., 2022. "Prospective life-cycle assessment of greenhouse gas emissions of electricity-based mobility options," Applied Energy, Elsevier, vol. 306(PB).
  23. Liao, Peng & Tang, Tie-Qiao & Liu, Ronghui & Huang, Hai-Jun, 2021. "An eco-driving strategy for electric vehicle based on the powertrain," Applied Energy, Elsevier, vol. 302(C).
  24. Huang, Wenxin & Wang, Jianguo & Wang, Jianping & Zeng, Haiyan & Zhou, Mi & Cao, Jinxin, 2024. "EV charging load profile identification and seasonal difference analysis via charging sessions data of charging stations," Energy, Elsevier, vol. 288(C).
  25. Walch, Alina & Rüdisüli, Martin, 2023. "Strategic PV expansion and its impact on regional electricity self-sufficiency: Case study of Switzerland," Applied Energy, Elsevier, vol. 346(C).
  26. Loris Di Natale & Luca Funk & Martin Rüdisüli & Bratislav Svetozarevic & Giacomo Pareschi & Philipp Heer & Giovanni Sansavini, 2021. "The Potential of Vehicle-to-Grid to Support the Energy Transition: A Case Study on Switzerland," Energies, MDPI, vol. 14(16), pages 1-24, August.
  27. Albert Hiesl & Jasmine Ramsebner & Reinhard Haas, 2021. "Modelling Stochastic Electricity Demand of Electric Vehicles Based on Traffic Surveys—The Case of Austria," Energies, MDPI, vol. 14(6), pages 1-19, March.
  28. Muhammad Naveed Iqbal & Lauri Kütt & Matti Lehtonen & Robert John Millar & Verner Püvi & Anton Rassõlkin & Galina L. Demidova, 2021. "Travel Activity Based Stochastic Modelling of Load and Charging State of Electric Vehicles," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
  29. Mikołaj Schmidt & Paweł Zmuda-Trzebiatowski & Marcin Kiciński & Piotr Sawicki & Konrad Lasak, 2021. "Multiple-Criteria-Based Electric Vehicle Charging Infrastructure Design Problem," Energies, MDPI, vol. 14(11), pages 1-34, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.