IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v242y2019icp351-363.html
   My bibliography  Save this item

Optimizing the management of smart home energy resources under different power cost scenarios

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Niphon Kaewdornhan & Chitchai Srithapon & Rittichai Liemthong & Rongrit Chatthaworn, 2023. "Real-Time Multi-Home Energy Management with EV Charging Scheduling Using Multi-Agent Deep Reinforcement Learning Optimization," Energies, MDPI, vol. 16(5), pages 1-25, March.
  2. Majdalani, Naim & Aelenei, Daniel & Lopes, Rui Amaral & Silva, Carlos Augusto Santo, 2020. "The potential of energy flexibility of space heating and cooling in Portugal," Utilities Policy, Elsevier, vol. 66(C).
  3. Mak, Davye & Choi, Dae-Hyun, 2020. "Optimization framework for coordinated operation of home energy management system and Volt-VAR optimization in unbalanced active distribution networks considering uncertainties," Applied Energy, Elsevier, vol. 276(C).
  4. Marko Milojević & Paweł Nowodziński & Ivica Terzić & Svetlana Danshina, 2021. "Households’ Energy Autonomy: Risks or Benefits for a State?," Energies, MDPI, vol. 14(7), pages 1-16, April.
  5. Reis, Inês F.G. & Gonçalves, Ivo & Lopes, Marta A.R. & Antunes, Carlos Henggeler, 2022. "Towards inclusive community-based energy markets: A multiagent framework," Applied Energy, Elsevier, vol. 307(C).
  6. Dadashi-Rad, Mohammad Hosein & Ghasemi-Marzbali, Ali & Ahangar, Roya Ahmadi, 2020. "Modeling and planning of smart buildings energy in power system considering demand response," Energy, Elsevier, vol. 213(C).
  7. Jeddi, Babak & Mishra, Yateendra & Ledwich, Gerard, 2021. "Distributed load scheduling in residential neighborhoods for coordinated operation of multiple home energy management systems," Applied Energy, Elsevier, vol. 300(C).
  8. Lu, Qing & Lü, Shuaikang & Leng, Yajun & Zhang, Zhixin, 2020. "Optimal household energy management based on smart residential energy hub considering uncertain behaviors," Energy, Elsevier, vol. 195(C).
  9. Christian Winzer & Patrick Hensler-Ludwig, 2024. "Design and Impact of Grid Tariffs," Energies, MDPI, vol. 17(6), pages 1-25, March.
  10. Ebrahimi, Seyyed Reza & Rahimiyan, Morteza & Assili, Mohsen & Hajizadeh, Amin, 2022. "Home energy management under correlated uncertainties: A statistical analysis through Copula," Applied Energy, Elsevier, vol. 305(C).
  11. Chen, Jianhong & Zhang, Youlang & Li, Xinzhou & Sun, Bo & Liao, Qiangqiang & Tao, Yibin & Wang, Zhiqin, 2020. "Strategic integration of vehicle-to-home system with home distributed photovoltaic power generation in Shanghai," Applied Energy, Elsevier, vol. 263(C).
  12. Ali M. Jasim & Basil H. Jasim & Soheil Mohseni & Alan C. Brent, 2023. "Energy Internet-Based Load Shifting in Smart Microgrids: An Experimental Study," Energies, MDPI, vol. 16(13), pages 1-26, June.
  13. Galina S. CHEBOTAREVA & Wadim STRIELKOWSKI & Viktor A. BLAGININ, 2019. "The renewable energy market: Companies’ development and profitability," Upravlenets, Ural State University of Economics, vol. 10(3), pages 58-69, July.
  14. Kim, Jeong Hun & Cho, Jae Yong & Jhun, Jeong Pil & Song, Gyeong Ju & Eom, Jong Hyuk & Jeong, Sinwoo & Hwang, Wonseop & Woo, Min Sik & Sung, Tae Hyun, 2021. "Development of a hybrid type smart pen piezoelectric energy harvester for an IoT platform," Energy, Elsevier, vol. 222(C).
  15. Inês F. G. Reis & Ivo Gonçalves & Marta A. R. Lopes & Carlos Henggeler Antunes, 2021. "Assessing the Influence of Different Goals in Energy Communities’ Self-Sufficiency—An Optimized Multiagent Approach," Energies, MDPI, vol. 14(4), pages 1-32, February.
  16. Ferreira, Paula & Rocha, Ana & Araujo, Madalena & Afonso, Joao L. & Antunes, Carlos Henggeler & Lopes, Marta A.R. & Osório, Gerardo J. & Catalão, João P.S. & Lopes, João Peças, 2023. "Assessing the societal impact of smart grids: Outcomes of a collaborative research project," Technology in Society, Elsevier, vol. 72(C).
  17. Javadi, Mohammad Sadegh & Gough, Matthew & Lotfi, Mohamed & Esmaeel Nezhad, Ali & Santos, Sérgio F. & Catalão, João P.S., 2020. "Optimal self-scheduling of home energy management system in the presence of photovoltaic power generation and batteries," Energy, Elsevier, vol. 210(C).
  18. Rocha, Helder R.O. & Honorato, Icaro H. & Fiorotti, Rodrigo & Celeste, Wanderley C. & Silvestre, Leonardo J. & Silva, Jair A.L., 2021. "An Artificial Intelligence based scheduling algorithm for demand-side energy management in Smart Homes," Applied Energy, Elsevier, vol. 282(PA).
  19. Melendez, Kevin A. & Subramanian, Vignesh & Das, Tapas K. & Kwon, Changhyun, 2019. "Empowering end-use consumers of electricity to aggregate for demand-side participation," Applied Energy, Elsevier, vol. 248(C), pages 372-382.
  20. Pamulapati, Trinadh & Mallipeddi, Rammohan & Lee, Minho, 2020. "Multi-objective home appliance scheduling with implicit and interactive user satisfaction modelling," Applied Energy, Elsevier, vol. 267(C).
  21. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
  22. Lim, Keumju & Lee, Jongsu & Lee, Hyunjoo, 2021. "Implementing automated residential demand response in South Korea: Consumer preferences and market potential," Utilities Policy, Elsevier, vol. 70(C).
  23. Mohammadi Rad, Amin & Barforoushi, Taghi, 2020. "Optimal scheduling of resources and appliances in smart homes under uncertainties considering participation in spot and contractual markets," Energy, Elsevier, vol. 192(C).
  24. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
  25. Reis, Inês F.G. & Gonçalves, Ivo & Lopes, Marta A.R. & Antunes, Carlos Henggeler, 2020. "A multi-agent system approach to exploit demand-side flexibility in an energy community," Utilities Policy, Elsevier, vol. 67(C).
  26. Wang, Meng & Yu, Hang & Lin, Xiaoyu & Jing, Rui & He, Fangjun & Li, Chaoen, 2020. "Comparing stochastic programming with posteriori approach for multi-objective optimization of distributed energy systems under uncertainty," Energy, Elsevier, vol. 210(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.