IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v218y2018icp199-216.html
   My bibliography  Save this item

Approximate model predictive building control via machine learning

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Byung-Ki Jeon & Eui-Jong Kim & Younggy Shin & Kyoung-Ho Lee, 2018. "Learning-Based Predictive Building Energy Model Using Weather Forecasts for Optimal Control of Domestic Energy Systems," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
  2. Zhe Tian & Chuang Ye & Jie Zhu & Jide Niu & Yakai Lu, 2023. "Accelerating Optimal Control Strategy Generation for HVAC Systems Using a Scenario Reduction Method: A Case Study," Energies, MDPI, vol. 16(7), pages 1-20, March.
  3. Bianchini, Gianni & Casini, Marco & Pepe, Daniele & Vicino, Antonio & Zanvettor, Giovanni Gino, 2019. "An integrated model predictive control approach for optimal HVAC and energy storage operation in large-scale buildings," Applied Energy, Elsevier, vol. 240(C), pages 327-340.
  4. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2021. "Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control," Applied Energy, Elsevier, vol. 288(C).
  5. Lee, Zachary E. & Zhang, K. Max, 2021. "Generalized reinforcement learning for building control using Behavioral Cloning," Applied Energy, Elsevier, vol. 304(C).
  6. Alsalemi, Abdullah & Ramadan, Mona & Bensaali, Faycal & Amira, Abbes & Sardianos, Christos & Varlamis, Iraklis & Dimitrakopoulos, George, 2019. "Endorsing domestic energy saving behavior using micro-moment classification," Applied Energy, Elsevier, vol. 250(C), pages 1302-1311.
  7. Zhou, Yuekuan & Zheng, Siqian & Zhang, Guoqiang, 2020. "Machine-learning based study on the on-site renewable electrical performance of an optimal hybrid PCMs integrated renewable system with high-level parameters’ uncertainties," Renewable Energy, Elsevier, vol. 151(C), pages 403-418.
  8. Lukas Theisinger & Michael Frank & Matthias Weigold, 2024. "Systematic Development of Application-Oriented Operating Strategies for the Example of an Industrial Heating Supply System," Energies, MDPI, vol. 17(9), pages 1-13, April.
  9. Elinor Ginzburg-Ganz & Itay Segev & Alexander Balabanov & Elior Segev & Sivan Kaully Naveh & Ram Machlev & Juri Belikov & Liran Katzir & Sarah Keren & Yoash Levron, 2024. "Reinforcement Learning Model-Based and Model-Free Paradigms for Optimal Control Problems in Power Systems: Comprehensive Review and Future Directions," Energies, MDPI, vol. 17(21), pages 1-54, October.
  10. Giaouris, Damian & Papadopoulos, Athanasios I. & Patsios, Charalampos & Walker, Sara & Ziogou, Chrysovalantou & Taylor, Phil & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos, 2018. "A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response," Applied Energy, Elsevier, vol. 226(C), pages 546-559.
  11. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  12. Tabares-Velasco, Paulo Cesar & Speake, Andrew & Harris, Maxwell & Newman, Alexandra & Vincent, Tyrone & Lanahan, Michael, 2019. "A modeling framework for optimization-based control of a residential building thermostat for time-of-use pricing," Applied Energy, Elsevier, vol. 242(C), pages 1346-1357.
  13. Dong, Zhe & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2020. "Multilayer perception based reinforcement learning supervisory control of energy systems with application to a nuclear steam supply system," Applied Energy, Elsevier, vol. 259(C).
  14. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
  15. Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  16. Wang, Xuezheng & Dong, Bing, 2024. "Long-term experimental evaluation and comparison of advanced controls for HVAC systems," Applied Energy, Elsevier, vol. 371(C).
  17. Mohammed Olama & Jin Dong & Isha Sharma & Yaosuo Xue & Teja Kuruganti, 2020. "Frequency Analysis of Solar PV Power to Enable Optimal Building Load Control," Energies, MDPI, vol. 13(18), pages 1-18, September.
  18. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).
  19. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
  20. Arroyo, Javier & Manna, Carlo & Spiessens, Fred & Helsen, Lieve, 2022. "Reinforced model predictive control (RL-MPC) for building energy management," Applied Energy, Elsevier, vol. 309(C).
  21. Zhou, Yuekuan & Zheng, Siqian, 2020. "Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities," Applied Energy, Elsevier, vol. 262(C).
  22. Kyoumars Habibi & Seyedeh Maryam Hoseini & Majid Dehshti & Mojtaba Khanian & Amir Mosavi, 2020. "The Impact of Natural Elements on Environmental Comfort in the Iranian-Islamic Historical City of Isfahan," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
  23. Savadkoohi, Marjan & Macarulla, Marcel & Casals, Miquel, 2023. "Facilitating the implementation of neural network-based predictive control to optimize building heating operation," Energy, Elsevier, vol. 263(PB).
  24. Zhou, Xinlei & Du, Han & Xue, Shan & Ma, Zhenjun, 2024. "Recent advances in data mining and machine learning for enhanced building energy management," Energy, Elsevier, vol. 307(C).
  25. Taboga, Vincent & Gehring, Clement & Cam, Mathieu Le & Dagdougui, Hanane & Bacon, Pierre-Luc, 2024. "Neural differential equations for temperature control in buildings under demand response programs," Applied Energy, Elsevier, vol. 368(C).
  26. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
  27. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
  28. Kathirgamanathan, Anjukan & De Rosa, Mattia & Mangina, Eleni & Finn, Donal P., 2021. "Data-driven predictive control for unlocking building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  29. Hu, R.L. & Granderson, J. & Auslander, D.M. & Agogino, A., 2019. "Design of machine learning models with domain experts for automated sensor selection for energy fault detection," Applied Energy, Elsevier, vol. 235(C), pages 117-128.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.