IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v250y2019icp1302-1311.html
   My bibliography  Save this article

Endorsing domestic energy saving behavior using micro-moment classification

Author

Listed:
  • Alsalemi, Abdullah
  • Ramadan, Mona
  • Bensaali, Faycal
  • Amira, Abbes
  • Sardianos, Christos
  • Varlamis, Iraklis
  • Dimitrakopoulos, George

Abstract

With the ever-growing rise of energy consumption and its devastating financial and environmental repercussions, it is of utmost significance to moderate energy usage with proper energy efficiency tools. This is particularly applicable to domestic energy end-users, where an accurate profile is a prerequisite for motivating energy saving behavior. This article presents an innovative method for accurately understanding domestic energy usage patterns through a classification system. It capitalizes on the emerging concept of micro-moments, short energy-related events, and builds a comprehensive profile of end-user’s energy activities with unprecedented accuracy. Micro-moments are classified based on a set of criteria per the given appliance. Five classifiers with different parameter settings were trained and tested on 10-fold cross-validated simulated data, with ensemble bagged trees topping with an accuracy of 88.0%. We also observed that linear classifiers lack in accuracy due to their inability to capture the dataset’s specific structure and patterns. Fused with the other components of our framework, the proposed classification system is a novel contribution to domestic energy profiling in an effort to step energy efficiency up to the next level.

Suggested Citation

  • Alsalemi, Abdullah & Ramadan, Mona & Bensaali, Faycal & Amira, Abbes & Sardianos, Christos & Varlamis, Iraklis & Dimitrakopoulos, George, 2019. "Endorsing domestic energy saving behavior using micro-moment classification," Applied Energy, Elsevier, vol. 250(C), pages 1302-1311.
  • Handle: RePEc:eee:appene:v:250:y:2019:i:c:p:1302-1311
    DOI: 10.1016/j.apenergy.2019.05.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191930950X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.05.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Yuzhen & Rysanek, Adam & Nagy, Zoltán & Schlüter, Arno, 2018. "Using machine learning techniques for occupancy-prediction-based cooling control in office buildings," Applied Energy, Elsevier, vol. 211(C), pages 1343-1358.
    2. Kaboli, S. Hr. Aghay & Selvaraj, J. & Rahim, N.A., 2016. "Long-term electric energy consumption forecasting via artificial cooperative search algorithm," Energy, Elsevier, vol. 115(P1), pages 857-871.
    3. Frederiks, Elisha R. & Stenner, Karen & Hobman, Elizabeth V., 2015. "Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1385-1394.
    4. Geyer, Philipp & Singaravel, Sundaravelpandian, 2018. "Component-based machine learning for performance prediction in building design," Applied Energy, Elsevier, vol. 228(C), pages 1439-1453.
    5. Drgoňa, Ján & Picard, Damien & Kvasnica, Michal & Helsen, Lieve, 2018. "Approximate model predictive building control via machine learning," Applied Energy, Elsevier, vol. 218(C), pages 199-216.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Varlamis, Iraklis & Sardianos, Christos & Chronis, Christos & Dimitrakopoulos, George & Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2022. "Smart fusion of sensor data and human feedback for personalized energy-saving recommendations," Applied Energy, Elsevier, vol. 305(C).
    2. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree," Applied Energy, Elsevier, vol. 267(C).
    3. Dasappa, Nirupam Sannagowdara & Kumar G, Krishna & Somu, Nivethitha, 2024. "Multi-sensor data fusion framework for energy optimization in smart homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    4. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction," Applied Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    3. Zhao, Haitao & Ezeh, Collins I. & Ren, Weijia & Li, Wentao & Pang, Cheng Heng & Zheng, Chenghang & Gao, Xiang & Wu, Tao, 2019. "Integration of machine learning approaches for accelerated discovery of transition-metal dichalcogenides as Hg0 sensing materials," Applied Energy, Elsevier, vol. 254(C).
    4. Zhou, Yuekuan & Zheng, Siqian & Zhang, Guoqiang, 2020. "Machine-learning based study on the on-site renewable electrical performance of an optimal hybrid PCMs integrated renewable system with high-level parameters’ uncertainties," Renewable Energy, Elsevier, vol. 151(C), pages 403-418.
    5. Hu, R.L. & Granderson, J. & Auslander, D.M. & Agogino, A., 2019. "Design of machine learning models with domain experts for automated sensor selection for energy fault detection," Applied Energy, Elsevier, vol. 235(C), pages 117-128.
    6. Zhou, Yuekuan & Zheng, Siqian, 2020. "Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities," Applied Energy, Elsevier, vol. 262(C).
    7. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    8. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    9. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    10. Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    11. Anna Borawska & Mariusz Borawski & Małgorzata Łatuszyńska, 2022. "Effectiveness of Electricity-Saving Communication Campaigns: Neurophysiological Approach," Energies, MDPI, vol. 15(4), pages 1-19, February.
    12. Halkos, George & Managi, Shunsuke, 2023. "New developments in the disciplines of environmental and resource economics," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 513-522.
    13. Luciano Cavalcante Siebert & Alexandre Rasi Aoki & Germano Lambert-Torres & Nelson Lambert-de-Andrade & Nikolaos G. Paterakis, 2020. "An Agent-Based Approach for the Planning of Distribution Grids as a Socio-Technical System," Energies, MDPI, vol. 13(18), pages 1-13, September.
    14. Suat Ozturk & Feride Ozturk, 2018. "Forecasting Energy Consumption of Turkey by Arima Model," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(2), pages 52-60, February.
    15. Imran & Naeem Iqbal & Shabir Ahmad & Do Hyeun Kim, 2021. "Towards Mountain Fire Safety Using Fire Spread Predictive Analytics and Mountain Fire Containment in IoT Environment," Sustainability, MDPI, vol. 13(5), pages 1-23, February.
    16. Goggins, Gary & Rau, Henrike & Moran, Paul & Fahy, Frances & Goggins, Jamie, 2022. "The role of culture in advancing sustainable energy policy and practice," Energy Policy, Elsevier, vol. 167(C).
    17. Daminato, Claudio & Diaz-Farina, Eugenio & Filippini, Massimo & Padrón-Fumero, Noemi, 2021. "The impact of smart meters on residential water consumption: Evidence from a natural experiment in the Canary Islands," Resource and Energy Economics, Elsevier, vol. 64(C).
    18. Luis Felipe Giraldo & Kevin M Passino, 2017. "Dynamics of Cooperation in a Task Completion Social Dilemma," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-25, January.
    19. Arroyo, Javier & Manna, Carlo & Spiessens, Fred & Helsen, Lieve, 2022. "Reinforced model predictive control (RL-MPC) for building energy management," Applied Energy, Elsevier, vol. 309(C).
    20. Jing Zhao & Yu Shan, 2020. "A Fuzzy Control Strategy Using the Load Forecast for Air Conditioning System," Energies, MDPI, vol. 13(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:250:y:2019:i:c:p:1302-1311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.